mirror of
https://github.com/NLnetLabs/unbound.git
synced 2025-12-20 23:00:56 -05:00
* - fast-reload, add unbound-control fast_reload * - fast-reload, make a thread to service the unbound-control command. * - fast-reload, communication sockets for information transfer. * - fast-reload, fix compile for unbound-dnstap-socket. * - fast-reload, set nonblocking communication to keep the server thread responding to DNS requests. * - fast-reload, poll routine to test for readiness, timeout fails connection. * - fast-reload, detect loop in sock_poll_timeout routine. * - fast-reload, send done and exited notification. * - fast-reload, defines for constants in ipc. * - fast-reload, ipc socket recv and send resists partial reads and writes and can continue byte by byte. Also it can continue after an interrupt. * - fast-reload, send exit command to thread when done. * - fast-reload, output strings for client on string list. * - fast-reload, add newline to terminal output. * - fast-reload, send client string to remote client. * - fast-reload, better debug output. * - fast-reload, print queue structure, for output to the remote client. * - fast-reload, move print items to print queue from fast_reload_thread struct. * - fast-reload, keep list of pending print queue items in daemon struct. * - fast-reload, comment explains in_list for printq to print remainder. * - fast-reload, unit test testdata/fast_reload_thread.tdir that tests the thread output. * - fast-reload, fix test link for fast_reload_printq_list_delete function. * - fast-reload, reread config file from disk. * - fast-reload, unshare forwards, making the structure locked, with an rwlock. * - fast-reload, for nonthreaded, the unbound-control commands forward, forward_add and forward_delete should be distributed to other processes, but when threaded, they should not be distributed to other threads because the structure is not thread specific any more. * - fast-reload, unshared stub hints, making the structure locked, with an rwlock. * - fast-reload, helpful comments for hints lookup function return value. * - fast-reload, fix bug in fast reload printout, the strlist appendlist routine, and printout time statistics after the reload is done. * - fast-reload, keep track of reloadtime and deletestime and print them. * - fast-reload, keep track of constructtime and print it. * - fast-reload, construct new items. * - fast-reload, better comment. * - fast-reload, reload the config and swap trees for forwards and stub hints. * - fast-reload, in forwards_swap_tree set protection of trees with locks. * - fast-reload, in hints_swap_tree also swap the node count of the trees. * - fast-reload, reload ipc to stop and start threads. * - fast-reload, unused forward declarations removed. * - fast-reload, unit test that fast reload works with forwards and stubs. * - fast-reload, fix clang analyzer warnings. * - fast-reload, small documentation entry in unbound-control -h output. * - fast-reload, printout memory use by fast reload, in bytes. * - fast-reload, compile without threads. * - fast-reload, document fast_reload in man page. * - fast-reload, print ok when done successfully. * - fast-reload, option for fast-reload commandline, +v verbosity option, with timing and memory use output. * - fast-reload, option for fast-reload commandline, +p does not pause threads. * - fast-reload, option for fast-reload commandline, +d drops mesh queries. * - fast-reload, fix to poll every thread with nopause to make certain that resources are not held by the threads and can be deleted. * - fast-reload, fix to use atomic store for config variables with nopause. * - fast-reload, reload views. * - fast-reload, when tag defines are different, it drops the queries. * - fast-reload, fix tag define check. * - fast-reload, document that tag change causes drop of queries. * - fast-reload, fix space in documentation man page. * - fast-reload, copy respip client information to query state, put views tree in module env for lookup. * - fast-reload, nicer respip view comparison. * - fast-reload, respip global set is in module env. * - fast-reload, document that respip_client_info acl info is copied. * - fast-reload, reload the respip_set. * - fast-reload, document no pause and pick up of use_response_ip boolean. * - fast-reload, fix test compile. * - fast-reload, reload local zones. * Update locking management for iter_fwd and iter_hints methods. (#1054) fast reload, move most of the locking management to iter_fwd and iter_hints methods. The caller still has the ability to handle its own locking, if desired, for atomic operations on sets of different structs. Co-authored-by: Wouter Wijngaards <wcawijngaards@users.noreply.github.com> * - fast-reload, reload access-control. * - fast-reload, reload access control interface, such as interface-action. * - fast-reload, reload tcp-connection-limit. * - fast-reload, improve comments on acl_list and tcl_list swap tree. * - fast-reload, fixup references to old tcp connection limits in open tcp connections. * - fast-reload, fixup to clean tcp connection also for different linked order. * - fast-reload, if no tcp connection limits existed, no need to remove references for that. * - fast-reload, document more options that work and do not work. * - fast-reload, reload auth_zone and rpz data. * - fast-reload, fix auth_zones_get_mem. * - fast-reload, fix compilation of testbound for the new comm_timer_get_mem reference in remote control. * - fast-reload, change use_rpz with reload. * - fast-reload, list changes in auth zones and stop zonemd callbacks for deleted auth zones. * - fast-reload, note xtree is not swapped, and why it is not swapped. * - fast-reload, for added auth zones, pick up zone transfer and zonemd tasks. * - fast-reload, unlock xfr when done with transfer pick up. * - fast-reload, unlock z when picking up the xfr for it during transfer task pick up. * - fast-reload, pick up task changes for added, deleted and modified auth zones. * - fast-reload, remove xfr of auth zone deletion without tasks. * - fast-reload, pick up zone transfer config. * - fast-reload, the main worker thread picks up the transfer tasks and also performs setup of the xfer struct. * - fast-reload, keep writelock on newzone when auth zone changes. * - fast-reload, change cachedb_enabled setting. * - fast-reload, pick up edns-strings config. * - fast-reload, note that settings are not updated. * - fast-reload, pick up dnstap config. * - fast-reload, dnstap options that need to be loaded without +p. * - fast-reload, fix auth zone reload * - fast-reload, remove debug for auth zone test. * - fast-reload, fix auth zone reload with zone transfer. * - fast-reload, fix auth zone reload lock order. * - fast-reload, remove debug from fast reload test. * - fast-reload, remove unused function. * - fast-reload, fix the worker trust anchor probe timer lock acquisition in the probe answer callback routine for trust anchor probes. * - fast-reload, reload trust anchors. * - fast-reload, fix trust anchor reload lock on autr global data and test for trust anchor reload. * - fast-reload, adjust cache sizes. * - fast-reload, reload cache sizes when changed. * - fast-reload, reload validator env changes. * - fast-reload, reload mesh changes. * - fast-reload, check for incompatible changes. * - fast-reload, improve error text for incompatible change. * - fast-reload, fix check config option compatibility. * - fast-reload, improve error text for nopause change. * - fast-reload, fix spelling of incompatible options. * - fast-reload, reload target-fetch-policy, outbound-msg-retry, max-sent-count and max-query-restarts. * - fast-reload, check nopause config change for target-fetch-policy. * - fast-reload, reload do-not-query-address, private-address and capt-exempt. * - fast-reload, check nopause config change for do-not-query-address, private-address and capt-exempt. * - fast-reload, check fast reload not possible due to interface and outgoing-interface changes. * - fast-reload, reload nat64 settings. * - fast-reload, reload settings stored in the infra structure. * - fast-reload, fix modstack lookup and remove outgoing-range check. * - fast-reload, more explanation for config parse failure. * - fast-reload, reload worker outside network changes. * - fast-reload, detect incompatible changes in network settings. * fast-reload, commit test files. * - fast-reload, fix warnings for call types in windows compile. * - fast-reload, fix warnings and comm_point_internal for tcp wouldblock calls. * - fast-reload, extend lock checks for repeat thread ids. * - fast-reload, additional test cases, cache change and tag changes. * - fast-reload, fix documentation for auth_zone_verify_zonemd_with_key. * - fast-reload, fix copy_cfg type casts and memory leak on config parse failure. * - fast-reload, fix use of WSAPoll. * Review comments for the fast reload feature (#1259) * - fast-reload review, respip set can be null from a view. * - fast-reload review, typos. * - fast-reload review, keep clang static analyzer happy. * - fast-reload review, don't forget to copy tag_actions. * - fast-reload review, less indentation. * - fast-reload review, don't leak respip_actions when reloading. * - fast-reload review, protect NULL pointer dereference in get_mem functions. * - fast-reload review, add fast_reload_most_options.tdir to test most options with high verbosity when fast reloading. * - fast-reload review, don't skip new line on long error printouts. * - fast-reload review, typo. * - fast-reload review, use new_z for consistency. * - fast-reload review, nit for unlock ordering to make eye comparison with the lock counterpart easier. * - fast-reload review, in case of error the sockets are already closed. * - fast-reload review, identation. * - fast-reload review, add static keywords. * - fast-reload review, update unbound-control usage text. * - fast-reload review, updates to the man page. * - fast-reload, the fast-reload command is experimental. * - fast-reload, fix compile of doqclient for fast reload functions. * Changelog comment for #1042 - Merge #1042: Fast Reload. The unbound-control fast_reload is added. It reads changed config in a thread, then only briefly pauses the service threads, that keep running. DNS service is only interrupted briefly, less than a second. --------- Co-authored-by: Yorgos Thessalonikefs <yorgos@nlnetlabs.nl>
706 lines
20 KiB
C
706 lines
20 KiB
C
/*
|
|
* util/storage/lruhash.c - hashtable, hash function, LRU keeping.
|
|
*
|
|
* Copyright (c) 2007, NLnet Labs. All rights reserved.
|
|
*
|
|
* This software is open source.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
*
|
|
* Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* Neither the name of the NLNET LABS nor the names of its contributors may
|
|
* be used to endorse or promote products derived from this software without
|
|
* specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
|
|
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/**
|
|
* \file
|
|
*
|
|
* This file contains a hashtable with LRU keeping of entries.
|
|
*
|
|
*/
|
|
|
|
#include "config.h"
|
|
#include "util/storage/lruhash.h"
|
|
#include "util/fptr_wlist.h"
|
|
|
|
void
|
|
bin_init(struct lruhash_bin* array, size_t size)
|
|
{
|
|
size_t i;
|
|
#ifdef THREADS_DISABLED
|
|
(void)array;
|
|
#endif
|
|
for(i=0; i<size; i++) {
|
|
lock_quick_init(&array[i].lock);
|
|
lock_protect(&array[i].lock, &array[i],
|
|
sizeof(struct lruhash_bin));
|
|
}
|
|
}
|
|
|
|
struct lruhash*
|
|
lruhash_create(size_t start_size, size_t maxmem,
|
|
lruhash_sizefunc_type sizefunc, lruhash_compfunc_type compfunc,
|
|
lruhash_delkeyfunc_type delkeyfunc,
|
|
lruhash_deldatafunc_type deldatafunc, void* arg)
|
|
{
|
|
struct lruhash* table = (struct lruhash*)calloc(1,
|
|
sizeof(struct lruhash));
|
|
if(!table)
|
|
return NULL;
|
|
lock_quick_init(&table->lock);
|
|
table->sizefunc = sizefunc;
|
|
table->compfunc = compfunc;
|
|
table->delkeyfunc = delkeyfunc;
|
|
table->deldatafunc = deldatafunc;
|
|
table->cb_arg = arg;
|
|
table->size = start_size;
|
|
table->size_mask = (int)(start_size-1);
|
|
table->lru_start = NULL;
|
|
table->lru_end = NULL;
|
|
table->num = 0;
|
|
table->space_used = 0;
|
|
table->space_max = maxmem;
|
|
table->max_collisions = 0;
|
|
table->array = calloc(table->size, sizeof(struct lruhash_bin));
|
|
if(!table->array) {
|
|
lock_quick_destroy(&table->lock);
|
|
free(table);
|
|
return NULL;
|
|
}
|
|
bin_init(table->array, table->size);
|
|
lock_protect(&table->lock, table, sizeof(*table));
|
|
lock_protect(&table->lock, table->array,
|
|
table->size*sizeof(struct lruhash_bin));
|
|
return table;
|
|
}
|
|
|
|
void
|
|
bin_delete(struct lruhash* table, struct lruhash_bin* bin)
|
|
{
|
|
struct lruhash_entry* p, *np;
|
|
void *d;
|
|
if(!bin)
|
|
return;
|
|
lock_quick_destroy(&bin->lock);
|
|
p = bin->overflow_list;
|
|
bin->overflow_list = NULL;
|
|
while(p) {
|
|
np = p->overflow_next;
|
|
d = p->data;
|
|
(*table->delkeyfunc)(p->key, table->cb_arg);
|
|
(*table->deldatafunc)(d, table->cb_arg);
|
|
p = np;
|
|
}
|
|
}
|
|
|
|
void
|
|
bin_split(struct lruhash* table, struct lruhash_bin* newa,
|
|
int newmask)
|
|
{
|
|
size_t i;
|
|
struct lruhash_entry *p, *np;
|
|
struct lruhash_bin* newbin;
|
|
/* move entries to new table. Notice that since hash x is mapped to
|
|
* bin x & mask, and new mask uses one more bit, so all entries in
|
|
* one bin will go into the old bin or bin | newbit */
|
|
#ifndef THREADS_DISABLED
|
|
int newbit = newmask - table->size_mask;
|
|
#endif
|
|
/* so, really, this task could also be threaded, per bin. */
|
|
/* LRU list is not changed */
|
|
for(i=0; i<table->size; i++)
|
|
{
|
|
lock_quick_lock(&table->array[i].lock);
|
|
p = table->array[i].overflow_list;
|
|
/* lock both destination bins */
|
|
lock_quick_lock(&newa[i].lock);
|
|
lock_quick_lock(&newa[newbit|i].lock);
|
|
while(p) {
|
|
np = p->overflow_next;
|
|
/* link into correct new bin */
|
|
newbin = &newa[p->hash & newmask];
|
|
p->overflow_next = newbin->overflow_list;
|
|
newbin->overflow_list = p;
|
|
p=np;
|
|
}
|
|
lock_quick_unlock(&newa[i].lock);
|
|
lock_quick_unlock(&newa[newbit|i].lock);
|
|
lock_quick_unlock(&table->array[i].lock);
|
|
}
|
|
}
|
|
|
|
void
|
|
lruhash_delete(struct lruhash* table)
|
|
{
|
|
size_t i;
|
|
if(!table)
|
|
return;
|
|
/* delete lock on hashtable to force check its OK */
|
|
lock_quick_destroy(&table->lock);
|
|
for(i=0; i<table->size; i++)
|
|
bin_delete(table, &table->array[i]);
|
|
free(table->array);
|
|
free(table);
|
|
}
|
|
|
|
void
|
|
bin_overflow_remove(struct lruhash_bin* bin, struct lruhash_entry* entry)
|
|
{
|
|
struct lruhash_entry* p = bin->overflow_list;
|
|
struct lruhash_entry** prevp = &bin->overflow_list;
|
|
while(p) {
|
|
if(p == entry) {
|
|
*prevp = p->overflow_next;
|
|
return;
|
|
}
|
|
prevp = &p->overflow_next;
|
|
p = p->overflow_next;
|
|
}
|
|
}
|
|
|
|
void
|
|
reclaim_space(struct lruhash* table, struct lruhash_entry** list)
|
|
{
|
|
struct lruhash_entry* d;
|
|
struct lruhash_bin* bin;
|
|
log_assert(table);
|
|
/* does not delete MRU entry, so table will not be empty. */
|
|
while(table->num > 1 && table->space_used > table->space_max) {
|
|
/* notice that since we hold the hashtable lock, nobody
|
|
can change the lru chain. So it cannot be deleted underneath
|
|
us. We still need the hashbin and entry write lock to make
|
|
sure we flush all users away from the entry.
|
|
which is unlikely, since it is LRU, if someone got a rdlock
|
|
it would be moved to front, but to be sure. */
|
|
d = table->lru_end;
|
|
/* specialised, delete from end of double linked list,
|
|
and we know num>1, so there is a previous lru entry. */
|
|
log_assert(d && d->lru_prev);
|
|
table->lru_end = d->lru_prev;
|
|
d->lru_prev->lru_next = NULL;
|
|
/* schedule entry for deletion */
|
|
bin = &table->array[d->hash & table->size_mask];
|
|
table->num --;
|
|
lock_quick_lock(&bin->lock);
|
|
bin_overflow_remove(bin, d);
|
|
d->overflow_next = *list;
|
|
*list = d;
|
|
lock_rw_wrlock(&d->lock);
|
|
table->space_used -= table->sizefunc(d->key, d->data);
|
|
if(table->markdelfunc)
|
|
(*table->markdelfunc)(d->key);
|
|
lock_rw_unlock(&d->lock);
|
|
lock_quick_unlock(&bin->lock);
|
|
}
|
|
}
|
|
|
|
struct lruhash_entry*
|
|
bin_find_entry(struct lruhash* table,
|
|
struct lruhash_bin* bin, hashvalue_type hash, void* key, size_t* collisions)
|
|
{
|
|
size_t c = 0;
|
|
struct lruhash_entry* p = bin->overflow_list;
|
|
while(p) {
|
|
if(p->hash == hash && table->compfunc(p->key, key) == 0)
|
|
break;
|
|
c++;
|
|
p = p->overflow_next;
|
|
}
|
|
if (collisions != NULL)
|
|
*collisions = c;
|
|
return p;
|
|
}
|
|
|
|
void
|
|
table_grow(struct lruhash* table)
|
|
{
|
|
struct lruhash_bin* newa;
|
|
int newmask;
|
|
size_t i;
|
|
if(table->size_mask == (int)(((size_t)-1)>>1)) {
|
|
log_err("hash array malloc: size_t too small");
|
|
return;
|
|
}
|
|
/* try to allocate new array, if not fail */
|
|
newa = calloc(table->size*2, sizeof(struct lruhash_bin));
|
|
if(!newa) {
|
|
log_err("hash grow: malloc failed");
|
|
/* continue with smaller array. Though its slower. */
|
|
return;
|
|
}
|
|
bin_init(newa, table->size*2);
|
|
newmask = (table->size_mask << 1) | 1;
|
|
bin_split(table, newa, newmask);
|
|
/* delete the old bins */
|
|
lock_unprotect(&table->lock, table->array);
|
|
for(i=0; i<table->size; i++) {
|
|
lock_quick_destroy(&table->array[i].lock);
|
|
}
|
|
free(table->array);
|
|
|
|
table->size *= 2;
|
|
table->size_mask = newmask;
|
|
table->array = newa;
|
|
lock_protect(&table->lock, table->array,
|
|
table->size*sizeof(struct lruhash_bin));
|
|
return;
|
|
}
|
|
|
|
void
|
|
lru_front(struct lruhash* table, struct lruhash_entry* entry)
|
|
{
|
|
entry->lru_prev = NULL;
|
|
entry->lru_next = table->lru_start;
|
|
if(!table->lru_start)
|
|
table->lru_end = entry;
|
|
else table->lru_start->lru_prev = entry;
|
|
table->lru_start = entry;
|
|
}
|
|
|
|
void
|
|
lru_remove(struct lruhash* table, struct lruhash_entry* entry)
|
|
{
|
|
if(entry->lru_prev)
|
|
entry->lru_prev->lru_next = entry->lru_next;
|
|
else table->lru_start = entry->lru_next;
|
|
if(entry->lru_next)
|
|
entry->lru_next->lru_prev = entry->lru_prev;
|
|
else table->lru_end = entry->lru_prev;
|
|
}
|
|
|
|
void
|
|
lru_touch(struct lruhash* table, struct lruhash_entry* entry)
|
|
{
|
|
log_assert(table && entry);
|
|
if(entry == table->lru_start)
|
|
return; /* nothing to do */
|
|
/* remove from current lru position */
|
|
lru_remove(table, entry);
|
|
/* add at front */
|
|
lru_front(table, entry);
|
|
}
|
|
|
|
void
|
|
lruhash_insert(struct lruhash* table, hashvalue_type hash,
|
|
struct lruhash_entry* entry, void* data, void* cb_arg)
|
|
{
|
|
struct lruhash_bin* bin;
|
|
struct lruhash_entry* found, *reclaimlist=NULL;
|
|
size_t need_size;
|
|
size_t collisions;
|
|
fptr_ok(fptr_whitelist_hash_sizefunc(table->sizefunc));
|
|
fptr_ok(fptr_whitelist_hash_delkeyfunc(table->delkeyfunc));
|
|
fptr_ok(fptr_whitelist_hash_deldatafunc(table->deldatafunc));
|
|
fptr_ok(fptr_whitelist_hash_compfunc(table->compfunc));
|
|
fptr_ok(fptr_whitelist_hash_markdelfunc(table->markdelfunc));
|
|
need_size = table->sizefunc(entry->key, data);
|
|
if(cb_arg == NULL) cb_arg = table->cb_arg;
|
|
|
|
/* find bin */
|
|
lock_quick_lock(&table->lock);
|
|
bin = &table->array[hash & table->size_mask];
|
|
lock_quick_lock(&bin->lock);
|
|
|
|
/* see if entry exists already */
|
|
if(!(found=bin_find_entry(table, bin, hash, entry->key, &collisions))) {
|
|
/* if not: add to bin */
|
|
entry->overflow_next = bin->overflow_list;
|
|
bin->overflow_list = entry;
|
|
lru_front(table, entry);
|
|
table->num++;
|
|
if (table->max_collisions < collisions)
|
|
table->max_collisions = collisions;
|
|
table->space_used += need_size;
|
|
} else {
|
|
/* if so: update data - needs a writelock */
|
|
table->space_used += need_size -
|
|
(*table->sizefunc)(found->key, found->data);
|
|
(*table->delkeyfunc)(entry->key, cb_arg);
|
|
lru_touch(table, found);
|
|
lock_rw_wrlock(&found->lock);
|
|
(*table->deldatafunc)(found->data, cb_arg);
|
|
found->data = data;
|
|
lock_rw_unlock(&found->lock);
|
|
}
|
|
lock_quick_unlock(&bin->lock);
|
|
if(table->space_used > table->space_max)
|
|
reclaim_space(table, &reclaimlist);
|
|
if(table->num >= table->size)
|
|
table_grow(table);
|
|
lock_quick_unlock(&table->lock);
|
|
|
|
/* finish reclaim if any (outside of critical region) */
|
|
while(reclaimlist) {
|
|
struct lruhash_entry* n = reclaimlist->overflow_next;
|
|
void* d = reclaimlist->data;
|
|
(*table->delkeyfunc)(reclaimlist->key, cb_arg);
|
|
(*table->deldatafunc)(d, cb_arg);
|
|
reclaimlist = n;
|
|
}
|
|
}
|
|
|
|
struct lruhash_entry*
|
|
lruhash_lookup(struct lruhash* table, hashvalue_type hash, void* key, int wr)
|
|
{
|
|
struct lruhash_entry* entry;
|
|
struct lruhash_bin* bin;
|
|
fptr_ok(fptr_whitelist_hash_compfunc(table->compfunc));
|
|
|
|
lock_quick_lock(&table->lock);
|
|
bin = &table->array[hash & table->size_mask];
|
|
lock_quick_lock(&bin->lock);
|
|
if((entry=bin_find_entry(table, bin, hash, key, NULL)))
|
|
lru_touch(table, entry);
|
|
lock_quick_unlock(&table->lock);
|
|
|
|
if(entry) {
|
|
if(wr) { lock_rw_wrlock(&entry->lock); }
|
|
else { lock_rw_rdlock(&entry->lock); }
|
|
}
|
|
lock_quick_unlock(&bin->lock);
|
|
return entry;
|
|
}
|
|
|
|
void
|
|
lruhash_remove(struct lruhash* table, hashvalue_type hash, void* key)
|
|
{
|
|
struct lruhash_entry* entry;
|
|
struct lruhash_bin* bin;
|
|
void *d;
|
|
fptr_ok(fptr_whitelist_hash_sizefunc(table->sizefunc));
|
|
fptr_ok(fptr_whitelist_hash_delkeyfunc(table->delkeyfunc));
|
|
fptr_ok(fptr_whitelist_hash_deldatafunc(table->deldatafunc));
|
|
fptr_ok(fptr_whitelist_hash_compfunc(table->compfunc));
|
|
fptr_ok(fptr_whitelist_hash_markdelfunc(table->markdelfunc));
|
|
|
|
lock_quick_lock(&table->lock);
|
|
bin = &table->array[hash & table->size_mask];
|
|
lock_quick_lock(&bin->lock);
|
|
if((entry=bin_find_entry(table, bin, hash, key, NULL))) {
|
|
bin_overflow_remove(bin, entry);
|
|
lru_remove(table, entry);
|
|
} else {
|
|
lock_quick_unlock(&table->lock);
|
|
lock_quick_unlock(&bin->lock);
|
|
return;
|
|
}
|
|
table->num--;
|
|
table->space_used -= (*table->sizefunc)(entry->key, entry->data);
|
|
lock_rw_wrlock(&entry->lock);
|
|
if(table->markdelfunc)
|
|
(*table->markdelfunc)(entry->key);
|
|
lock_rw_unlock(&entry->lock);
|
|
lock_quick_unlock(&bin->lock);
|
|
lock_quick_unlock(&table->lock);
|
|
/* finish removal */
|
|
d = entry->data;
|
|
(*table->delkeyfunc)(entry->key, table->cb_arg);
|
|
(*table->deldatafunc)(d, table->cb_arg);
|
|
}
|
|
|
|
/** clear bin, respecting locks, does not do space, LRU */
|
|
static void
|
|
bin_clear(struct lruhash* table, struct lruhash_bin* bin)
|
|
{
|
|
struct lruhash_entry* p, *np;
|
|
void *d;
|
|
lock_quick_lock(&bin->lock);
|
|
p = bin->overflow_list;
|
|
while(p) {
|
|
lock_rw_wrlock(&p->lock);
|
|
np = p->overflow_next;
|
|
d = p->data;
|
|
if(table->markdelfunc)
|
|
(*table->markdelfunc)(p->key);
|
|
lock_rw_unlock(&p->lock);
|
|
(*table->delkeyfunc)(p->key, table->cb_arg);
|
|
(*table->deldatafunc)(d, table->cb_arg);
|
|
p = np;
|
|
}
|
|
bin->overflow_list = NULL;
|
|
lock_quick_unlock(&bin->lock);
|
|
}
|
|
|
|
void
|
|
lruhash_clear(struct lruhash* table)
|
|
{
|
|
size_t i;
|
|
if(!table)
|
|
return;
|
|
fptr_ok(fptr_whitelist_hash_delkeyfunc(table->delkeyfunc));
|
|
fptr_ok(fptr_whitelist_hash_deldatafunc(table->deldatafunc));
|
|
fptr_ok(fptr_whitelist_hash_markdelfunc(table->markdelfunc));
|
|
|
|
lock_quick_lock(&table->lock);
|
|
for(i=0; i<table->size; i++) {
|
|
bin_clear(table, &table->array[i]);
|
|
}
|
|
table->lru_start = NULL;
|
|
table->lru_end = NULL;
|
|
table->num = 0;
|
|
table->space_used = 0;
|
|
lock_quick_unlock(&table->lock);
|
|
}
|
|
|
|
void
|
|
lruhash_status(struct lruhash* table, const char* id, int extended)
|
|
{
|
|
lock_quick_lock(&table->lock);
|
|
log_info("%s: %u entries, memory %u / %u",
|
|
id, (unsigned)table->num, (unsigned)table->space_used,
|
|
(unsigned)table->space_max);
|
|
log_info(" itemsize %u, array %u, mask %d",
|
|
(unsigned)(table->num? table->space_used/table->num : 0),
|
|
(unsigned)table->size, table->size_mask);
|
|
if(extended) {
|
|
size_t i;
|
|
int min=(int)table->size*2, max=-2;
|
|
for(i=0; i<table->size; i++) {
|
|
int here = 0;
|
|
struct lruhash_entry *en;
|
|
lock_quick_lock(&table->array[i].lock);
|
|
en = table->array[i].overflow_list;
|
|
while(en) {
|
|
here ++;
|
|
en = en->overflow_next;
|
|
}
|
|
lock_quick_unlock(&table->array[i].lock);
|
|
if(extended >= 2)
|
|
log_info("bin[%d] %d", (int)i, here);
|
|
if(here > max) max = here;
|
|
if(here < min) min = here;
|
|
}
|
|
log_info(" bin min %d, avg %.2lf, max %d", min,
|
|
(double)table->num/(double)table->size, max);
|
|
}
|
|
lock_quick_unlock(&table->lock);
|
|
}
|
|
|
|
size_t
|
|
lruhash_get_mem(struct lruhash* table)
|
|
{
|
|
size_t s;
|
|
lock_quick_lock(&table->lock);
|
|
s = sizeof(struct lruhash) + table->space_used;
|
|
#ifdef USE_THREAD_DEBUG
|
|
if(table->size != 0) {
|
|
size_t i;
|
|
for(i=0; i<table->size; i++)
|
|
s += sizeof(struct lruhash_bin) +
|
|
lock_get_mem(&table->array[i].lock);
|
|
}
|
|
#else /* no THREAD_DEBUG */
|
|
if(table->size != 0)
|
|
s += (table->size)*(sizeof(struct lruhash_bin) +
|
|
lock_get_mem(&table->array[0].lock));
|
|
#endif
|
|
lock_quick_unlock(&table->lock);
|
|
s += lock_get_mem(&table->lock);
|
|
return s;
|
|
}
|
|
|
|
void
|
|
lruhash_setmarkdel(struct lruhash* table, lruhash_markdelfunc_type md)
|
|
{
|
|
lock_quick_lock(&table->lock);
|
|
table->markdelfunc = md;
|
|
lock_quick_unlock(&table->lock);
|
|
}
|
|
|
|
void
|
|
lruhash_update_space_used(struct lruhash* table, void* cb_arg, int diff_size)
|
|
{
|
|
struct lruhash_entry *reclaimlist = NULL;
|
|
|
|
fptr_ok(fptr_whitelist_hash_sizefunc(table->sizefunc));
|
|
fptr_ok(fptr_whitelist_hash_delkeyfunc(table->delkeyfunc));
|
|
fptr_ok(fptr_whitelist_hash_deldatafunc(table->deldatafunc));
|
|
fptr_ok(fptr_whitelist_hash_markdelfunc(table->markdelfunc));
|
|
|
|
if(cb_arg == NULL) cb_arg = table->cb_arg;
|
|
|
|
/* update space used */
|
|
lock_quick_lock(&table->lock);
|
|
|
|
if((int)table->space_used + diff_size < 0)
|
|
table->space_used = 0;
|
|
else table->space_used = (size_t)((int)table->space_used + diff_size);
|
|
|
|
if(table->space_used > table->space_max)
|
|
reclaim_space(table, &reclaimlist);
|
|
|
|
lock_quick_unlock(&table->lock);
|
|
|
|
/* finish reclaim if any (outside of critical region) */
|
|
while(reclaimlist) {
|
|
struct lruhash_entry* n = reclaimlist->overflow_next;
|
|
void* d = reclaimlist->data;
|
|
(*table->delkeyfunc)(reclaimlist->key, cb_arg);
|
|
(*table->deldatafunc)(d, cb_arg);
|
|
reclaimlist = n;
|
|
}
|
|
}
|
|
|
|
void lruhash_update_space_max(struct lruhash* table, void* cb_arg, size_t max)
|
|
{
|
|
struct lruhash_entry *reclaimlist = NULL;
|
|
|
|
fptr_ok(fptr_whitelist_hash_sizefunc(table->sizefunc));
|
|
fptr_ok(fptr_whitelist_hash_delkeyfunc(table->delkeyfunc));
|
|
fptr_ok(fptr_whitelist_hash_deldatafunc(table->deldatafunc));
|
|
fptr_ok(fptr_whitelist_hash_markdelfunc(table->markdelfunc));
|
|
|
|
if(cb_arg == NULL) cb_arg = table->cb_arg;
|
|
|
|
/* update space max */
|
|
lock_quick_lock(&table->lock);
|
|
table->space_max = max;
|
|
|
|
if(table->space_used > table->space_max)
|
|
reclaim_space(table, &reclaimlist);
|
|
|
|
lock_quick_unlock(&table->lock);
|
|
|
|
/* finish reclaim if any (outside of critical region) */
|
|
while(reclaimlist) {
|
|
struct lruhash_entry* n = reclaimlist->overflow_next;
|
|
void* d = reclaimlist->data;
|
|
(*table->delkeyfunc)(reclaimlist->key, cb_arg);
|
|
(*table->deldatafunc)(d, cb_arg);
|
|
reclaimlist = n;
|
|
}
|
|
}
|
|
|
|
void
|
|
lruhash_traverse(struct lruhash* h, int wr,
|
|
void (*func)(struct lruhash_entry*, void*), void* arg)
|
|
{
|
|
size_t i;
|
|
struct lruhash_entry* e;
|
|
|
|
lock_quick_lock(&h->lock);
|
|
for(i=0; i<h->size; i++) {
|
|
lock_quick_lock(&h->array[i].lock);
|
|
for(e = h->array[i].overflow_list; e; e = e->overflow_next) {
|
|
if(wr) {
|
|
lock_rw_wrlock(&e->lock);
|
|
} else {
|
|
lock_rw_rdlock(&e->lock);
|
|
}
|
|
(*func)(e, arg);
|
|
lock_rw_unlock(&e->lock);
|
|
}
|
|
lock_quick_unlock(&h->array[i].lock);
|
|
}
|
|
lock_quick_unlock(&h->lock);
|
|
}
|
|
|
|
/*
|
|
* Demote: the opposite of touch, move an entry to the bottom
|
|
* of the LRU pile.
|
|
*/
|
|
|
|
void
|
|
lru_demote(struct lruhash* table, struct lruhash_entry* entry)
|
|
{
|
|
log_assert(table && entry);
|
|
if (entry == table->lru_end)
|
|
return; /* nothing to do */
|
|
/* remove from current lru position */
|
|
lru_remove(table, entry);
|
|
/* add at end */
|
|
entry->lru_next = NULL;
|
|
entry->lru_prev = table->lru_end;
|
|
|
|
if (table->lru_end == NULL)
|
|
{
|
|
table->lru_start = entry;
|
|
}
|
|
else
|
|
{
|
|
table->lru_end->lru_next = entry;
|
|
}
|
|
table->lru_end = entry;
|
|
}
|
|
|
|
struct lruhash_entry*
|
|
lruhash_insert_or_retrieve(struct lruhash* table, hashvalue_type hash,
|
|
struct lruhash_entry* entry, void* data, void* cb_arg)
|
|
{
|
|
struct lruhash_bin* bin;
|
|
struct lruhash_entry* found, *reclaimlist = NULL;
|
|
size_t need_size;
|
|
size_t collisions;
|
|
fptr_ok(fptr_whitelist_hash_sizefunc(table->sizefunc));
|
|
fptr_ok(fptr_whitelist_hash_delkeyfunc(table->delkeyfunc));
|
|
fptr_ok(fptr_whitelist_hash_deldatafunc(table->deldatafunc));
|
|
fptr_ok(fptr_whitelist_hash_compfunc(table->compfunc));
|
|
fptr_ok(fptr_whitelist_hash_markdelfunc(table->markdelfunc));
|
|
need_size = table->sizefunc(entry->key, data);
|
|
if (cb_arg == NULL) cb_arg = table->cb_arg;
|
|
|
|
/* find bin */
|
|
lock_quick_lock(&table->lock);
|
|
bin = &table->array[hash & table->size_mask];
|
|
lock_quick_lock(&bin->lock);
|
|
|
|
/* see if entry exists already */
|
|
if ((found = bin_find_entry(table, bin, hash, entry->key, &collisions)) != NULL) {
|
|
/* if so: keep the existing data - acquire a writelock */
|
|
lock_rw_wrlock(&found->lock);
|
|
}
|
|
else
|
|
{
|
|
/* if not: add to bin */
|
|
entry->overflow_next = bin->overflow_list;
|
|
bin->overflow_list = entry;
|
|
lru_front(table, entry);
|
|
table->num++;
|
|
if (table->max_collisions < collisions)
|
|
table->max_collisions = collisions;
|
|
table->space_used += need_size;
|
|
/* return the entry that was presented, and lock it */
|
|
found = entry;
|
|
lock_rw_wrlock(&found->lock);
|
|
}
|
|
lock_quick_unlock(&bin->lock);
|
|
if (table->space_used > table->space_max)
|
|
reclaim_space(table, &reclaimlist);
|
|
if (table->num >= table->size)
|
|
table_grow(table);
|
|
lock_quick_unlock(&table->lock);
|
|
|
|
/* finish reclaim if any (outside of critical region) */
|
|
while (reclaimlist) {
|
|
struct lruhash_entry* n = reclaimlist->overflow_next;
|
|
void* d = reclaimlist->data;
|
|
(*table->delkeyfunc)(reclaimlist->key, cb_arg);
|
|
(*table->deldatafunc)(d, cb_arg);
|
|
reclaimlist = n;
|
|
}
|
|
|
|
/* return the entry that was selected */
|
|
return found;
|
|
}
|
|
|