unbound/util/data/msgreply.c
Wouter Wijngaards 1bffcab1f3 no more iov per rr.
git-svn-id: file:///svn/unbound/trunk@266 be551aaa-1e26-0410-a405-d3ace91eadb9
2007-04-27 12:42:03 +00:00

888 lines
25 KiB
C

/*
* util/data/msgreply.c - store message and reply data.
*
* Copyright (c) 2007, NLnet Labs. All rights reserved.
*
* This software is open source.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* Neither the name of the NLNET LABS nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/**
* \file
*
* This file contains a data structure to store a message and its reply.
*/
#include "config.h"
#include "util/data/msgreply.h"
#include "util/storage/lookup3.h"
#include "util/log.h"
#include "util/alloc.h"
#include "util/netevent.h"
#include "util/net_help.h"
#include "util/data/dname.h"
#include "util/region-allocator.h"
#include "util/data/msgparse.h"
/** copy and allocate an uncompressed dname. */
static uint8_t*
copy_uncompr(uint8_t* dname, size_t len)
{
uint8_t* p = (uint8_t*)malloc(len);
if(!p)
return 0;
memmove(p, dname, len);
return p;
}
/** allocate qinfo, return 0 on error. */
static int
parse_create_qinfo(struct msg_parse* msg, struct query_info* qinf)
{
if(msg->qname) {
if(!(qinf->qname = copy_uncompr(msg->qname, msg->qname_len)))
return 0;
} else qinf->qname = 0;
qinf->qnamesize = msg->qname_len;
qinf->qtype = msg->qtype;
qinf->qclass = msg->qclass;
return 1;
}
/** allocate replyinfo, return 0 on error. */
static int
parse_create_repinfo(struct msg_parse* msg, struct reply_info** rep)
{
/* rrset_count-1 because the first ref is part of the struct. */
*rep = (struct reply_info*)malloc(sizeof(struct reply_info) +
sizeof(struct rrset_ref) * (msg->rrset_count-1) +
sizeof(struct ub_packed_rrset_key*) * msg->rrset_count);
if(!*rep) return 0;
(*rep)->reply = 0; /* unused */
(*rep)->replysize = 0; /* unused */
(*rep)->flags = msg->flags;
(*rep)->qdcount = msg->qdcount;
(*rep)->ttl = 0;
(*rep)->an_numrrsets = msg->an_rrsets;
(*rep)->ns_numrrsets = msg->ns_rrsets;
(*rep)->ar_numrrsets = msg->ar_rrsets;
(*rep)->rrset_count = msg->rrset_count;
/* array starts after the refs */
(*rep)->rrsets = (struct ub_packed_rrset_key**)
&((*rep)->ref[msg->rrset_count]);
/* zero the arrays to assist cleanup in case of malloc failure */
memset( (*rep)->rrsets, 0,
sizeof(struct ub_packed_rrset_key*) * msg->rrset_count);
memset( &(*rep)->ref[0], 0,
sizeof(struct rrset_ref) * msg->rrset_count);
return 1;
}
/** allocate (special) rrset keys, return 0 on error. */
static int
parse_alloc_rrset_keys(struct msg_parse* msg, struct reply_info* rep,
struct alloc_cache* alloc)
{
size_t i;
for(i=0; i<msg->rrset_count; i++) {
rep->rrsets[i] = alloc_special_obtain(alloc);
if(!rep->rrsets[i])
return 0;
rep->rrsets[i]->entry.data = NULL;
}
return 1;
}
/** do the rdata copy */
static int
rdata_copy(ldns_buffer* pkt, struct packed_rrset_data* data, uint8_t* to,
struct rr_parse* rr, uint32_t* rr_ttl, uint16_t type)
{
uint16_t pkt_len;
const ldns_rr_descriptor* desc;
ldns_buffer_set_position(pkt, (size_t)
(rr->ttl_data - ldns_buffer_begin(pkt)));
log_assert(ldns_buffer_remaining(pkt) >= 6 /* ttl + rdatalen */);
*rr_ttl = ldns_buffer_read_u32(pkt);
/* RFC 2181 Section 8. if msb of ttl is set treat as if zero. */
if(*rr_ttl & 0x80000000U)
*rr_ttl = 0;
if(*rr_ttl < data->ttl)
data->ttl = *rr_ttl;
/* insert decompressed size into rdata len stored in memory */
/* -2 because rdatalen bytes are not included. */
pkt_len = htons(rr->size - 2);
memmove(to, &pkt_len, sizeof(uint16_t));
to += 2;
/* read packet rdata len */
pkt_len = ldns_buffer_read_u16(pkt);
if(ldns_buffer_remaining(pkt) < pkt_len)
return 0;
log_assert((size_t)pkt_len+2 <= rr->size);
desc = ldns_rr_descript(type);
if(pkt_len > 0 && desc && desc->_dname_count > 0) {
int count = (int)desc->_dname_count;
int rdf = 0;
size_t len;
size_t oldpos;
/* decompress dnames. */
while(pkt_len > 0 && count) {
switch(desc->_wireformat[rdf]) {
case LDNS_RDF_TYPE_DNAME:
oldpos = ldns_buffer_position(pkt);
dname_pkt_copy(pkt, to,
ldns_buffer_current(pkt));
to += pkt_dname_len(pkt);
pkt_len -= ldns_buffer_position(pkt)-oldpos;
count--;
len = 0;
break;
case LDNS_RDF_TYPE_STR:
len = ldns_buffer_current(pkt)[0] + 1;
break;
default:
len = get_rdf_size(desc->_wireformat[rdf]);
break;
}
if(len) {
memmove(to, ldns_buffer_current(pkt), len);
to += len;
ldns_buffer_skip(pkt, (ssize_t)len);
log_assert(len <= pkt_len);
pkt_len -= len;
}
rdf++;
}
}
/* copy remaining rdata */
if(pkt_len > 0)
memmove(to, ldns_buffer_current(pkt), pkt_len);
return 1;
}
/** copy over the data into packed rrset */
static int
parse_rr_copy(ldns_buffer* pkt, struct rrset_parse* pset,
struct packed_rrset_data* data)
{
size_t i;
struct rr_parse* rr = pset->rr_first;
uint8_t* nextrdata;
size_t total = pset->rr_count + pset->rrsig_count;
data->ttl = MAX_TTL;
data->count = pset->rr_count;
data->rrsig_count = pset->rrsig_count;
/* layout: struct - rr_len - rr_data - rdata - rrsig */
data->rr_len = (size_t*)((uint8_t*)data +
sizeof(struct packed_rrset_data));
data->rr_ttl = (uint32_t*)&(data->rr_len[total]);
data->rr_data = (uint8_t**)&(data->rr_ttl[total]);
nextrdata = (uint8_t*)&(data->rr_data[total]);
for(i=0; i<data->count; i++) {
data->rr_len[i] = rr->size;
data->rr_data[i] = nextrdata;
nextrdata += rr->size;
if(!rdata_copy(pkt, data, data->rr_data[i], rr,
&data->rr_ttl[i], pset->type))
return 0;
rr = rr->next;
}
/* if rrsig, its rdata is at nextrdata */
rr = pset->rrsig_first;
for(i=data->count; i<total; i++) {
data->rr_len[i] = rr->size;
data->rr_data[i] = nextrdata;
nextrdata += rr->size;
if(!rdata_copy(pkt, data, data->rr_data[i], rr,
&data->rr_ttl[i], LDNS_RR_TYPE_RRSIG))
return 0;
rr = rr->next;
}
return 1;
}
/** create rrset return 0 or rcode */
static int
parse_create_rrset(ldns_buffer* pkt, struct rrset_parse* pset,
struct packed_rrset_data** data)
{
/* allocate */
*data = malloc(sizeof(struct packed_rrset_data) +
(pset->rr_count + pset->rrsig_count) *
(sizeof(size_t)+sizeof(uint8_t*)+sizeof(uint32_t)) +
pset->size);
if(!*data)
return LDNS_RCODE_SERVFAIL;
/* copy & decompress */
if(!parse_rr_copy(pkt, pset, *data))
return LDNS_RCODE_SERVFAIL;
return 0;
}
/**
* Copy and decompress rrs
* @param pkt: the packet for compression pointer resolution.
* @param msg: the parsed message
* @param rep: reply info to put rrs into.
* @return 0 or rcode.
*/
static int
parse_copy_decompress(ldns_buffer* pkt, struct msg_parse* msg,
struct reply_info* rep)
{
int ret;
size_t i;
uint16_t t;
struct rrset_parse *pset = msg->rrset_first;
struct packed_rrset_data* data;
log_assert(rep);
for(i=0; i<rep->rrset_count; i++) {
rep->rrsets[i]->rk.flags = pset->flags;
rep->rrsets[i]->rk.dname_len = pset->dname_len;
rep->rrsets[i]->rk.dname = (uint8_t*)malloc(
pset->dname_len + 4 /* size of type and class */ );
if(!rep->rrsets[i]->rk.dname)
return LDNS_RCODE_SERVFAIL;
/** copy & decompress dname */
dname_pkt_copy(pkt, rep->rrsets[i]->rk.dname, pset->dname);
/** copy over type and class */
t = htons(pset->type);
memmove(&rep->rrsets[i]->rk.dname[pset->dname_len],
&t, sizeof(uint16_t));
memmove(&rep->rrsets[i]->rk.dname[pset->dname_len+2],
&pset->rrset_class, sizeof(uint16_t));
/** read data part. */
if((ret=parse_create_rrset(pkt, pset, &data)) != 0)
return ret;
rep->rrsets[i]->entry.data = (void*)data;
rep->rrsets[i]->entry.hash = pset->hash;
pset = pset->rrset_all_next;
}
return 0;
}
/** allocate and decompress message and rrsets, returns 0 or rcode. */
static int
parse_create_msg(ldns_buffer* pkt, struct msg_parse* msg,
struct alloc_cache* alloc, struct query_info* qinf,
struct reply_info** rep)
{
int ret;
log_assert(pkt && msg);
if(!parse_create_qinfo(msg, qinf))
return LDNS_RCODE_SERVFAIL;
if(!parse_create_repinfo(msg, rep))
return LDNS_RCODE_SERVFAIL;
if(!parse_alloc_rrset_keys(msg, *rep, alloc))
return LDNS_RCODE_SERVFAIL;
if((ret=parse_copy_decompress(pkt, msg, *rep)) != 0)
return ret;
return 0;
}
int reply_info_parse(ldns_buffer* pkt, struct alloc_cache* alloc,
struct query_info* qinf, struct reply_info** rep)
{
/* use scratch pad region-allocator during parsing. */
region_type* region = region_create(malloc, free);
struct msg_parse* msg;
int ret;
qinf->qname = NULL;
*rep = NULL;
if(!(msg = region_alloc(region, sizeof(*msg)))) {
region_free_all(region);
region_destroy(region);
return LDNS_RCODE_SERVFAIL;
}
memset(msg, 0, sizeof(*msg));
log_assert(ldns_buffer_position(pkt) == 0);
if((ret = parse_packet(pkt, msg, region)) != 0) {
region_free_all(region);
region_destroy(region);
return ret;
}
/* parse OK, allocate return structures */
/* this also performs dname decompression */
if((ret = parse_create_msg(pkt, msg, alloc, qinf, rep)) != 0) {
query_info_clear(qinf);
reply_info_parsedelete(*rep, alloc);
*rep = NULL;
region_free_all(region);
region_destroy(region);
return ret;
}
/* exit and cleanup */
region_free_all(region);
region_destroy(region);
return 0;
}
void
reply_info_parsedelete(struct reply_info* rep, struct alloc_cache* alloc)
{
size_t i;
if(!rep)
return;
/* no need to lock, since not shared in hashtables. */
for(i=0; i<rep->rrset_count; i++) {
ub_packed_rrset_parsedelete(rep->rrsets[i], alloc);
}
free(rep);
}
int
query_info_parse(struct query_info* m, ldns_buffer* query)
{
uint8_t* q = ldns_buffer_begin(query);
/* minimum size: header + \0 + qtype + qclass */
if(ldns_buffer_limit(query) < LDNS_HEADER_SIZE + 5)
return 0;
log_assert(!LDNS_QR_WIRE(q));
log_assert(LDNS_OPCODE_WIRE(q) == LDNS_PACKET_QUERY);
log_assert(LDNS_QDCOUNT(q) == 1);
log_assert(ldns_buffer_position(query) == 0);
m->has_cd = (int)LDNS_CD_WIRE(q);
ldns_buffer_skip(query, LDNS_HEADER_SIZE);
m->qname = ldns_buffer_current(query);
if((m->qnamesize = query_dname_len(query)) == 0)
return 0; /* parse error */
if(ldns_buffer_remaining(query) < 4)
return 0; /* need qtype, qclass */
m->qtype = ldns_buffer_read_u16(query);
m->qclass = ldns_buffer_read_u16(query);
return 1;
}
int
query_info_allocqname(struct query_info* m)
{
uint8_t* q = m->qname;
if(!(m->qname = (uint8_t*)malloc(m->qnamesize))) {
log_err("query_info_allocqname: out of memory");
return 0; /* out of memory */
}
memcpy(m->qname, q, m->qnamesize);
return 1;
}
/** tiny subroutine for msgreply_compare */
#define COMPARE_IT(x, y) \
if( (x) < (y) ) return -1; \
else if( (x) > (y) ) return +1; \
log_assert( (x) == (y) );
int
query_info_compare(void* m1, void* m2)
{
struct query_info* msg1 = (struct query_info*)m1;
struct query_info* msg2 = (struct query_info*)m2;
int mc;
/* from most different to least different for speed */
COMPARE_IT(msg1->qtype, msg2->qtype);
if((mc = query_dname_compare(msg1->qname, msg2->qname)) != 0)
return mc;
log_assert(msg1->qnamesize == msg2->qnamesize);
COMPARE_IT(msg1->has_cd, msg2->has_cd);
COMPARE_IT(msg1->qclass, msg2->qclass);
return 0;
#undef COMPARE_IT
}
void
query_info_clear(struct query_info* m)
{
free(m->qname);
m->qname = NULL;
}
void
reply_info_clear(struct reply_info* m)
{
free(m->reply);
m->reply = NULL;
}
size_t
msgreply_sizefunc(void* k, void* d)
{
struct query_info* q = (struct query_info*)k;
struct reply_info* r = (struct reply_info*)d;
return sizeof(struct msgreply_entry) + sizeof(struct reply_info)
+ r->replysize + q->qnamesize;
}
void
query_entry_delete(void *k, void* ATTR_UNUSED(arg))
{
struct msgreply_entry* q = (struct msgreply_entry*)k;
lock_rw_destroy(&q->entry.lock);
query_info_clear(&q->key);
free(q);
}
void
reply_info_delete(void* d, void* ATTR_UNUSED(arg))
{
struct reply_info* r = (struct reply_info*)d;
reply_info_clear(r);
free(r);
}
hashvalue_t
query_info_hash(struct query_info *q)
{
hashvalue_t h = 0xab;
h = hashlittle(&q->qtype, sizeof(q->qtype), h);
h = hashlittle(&q->qclass, sizeof(q->qclass), h);
h = hashlittle(&q->has_cd, sizeof(q->has_cd), h);
h = dname_query_hash(q->qname, h);
return h;
}
void
reply_info_answer(struct reply_info* rep, uint16_t qflags,
ldns_buffer* buffer)
{
uint16_t flags;
ldns_buffer_clear(buffer);
ldns_buffer_skip(buffer, 2); /* ID */
flags = rep->flags | (qflags & BIT_RD); /* copy RD bit */
log_assert(flags & BIT_QR); /* QR bit must be on in our replies */
ldns_buffer_write_u16(buffer, flags);
ldns_buffer_write(buffer, rep->reply, rep->replysize);
ldns_buffer_flip(buffer);
}
/**
* Data structure to help domain name compression in outgoing messages.
* A tree of dnames and their offsets in the packet is kept.
* It is kept sorted, not canonical, but by label at least, so that after
* a lookup of a name you know its closest match, and the parent from that
* closest match. These are possible compression targets.
*
* It is a binary tree, not a rbtree or balanced tree, as the effort
* of keeping it balanced probably outweighs usefulness (given typical
* DNS packet size).
*/
struct compress_tree_node {
/** left node in tree, all smaller to this */
struct compress_tree_node* left;
/** right node in tree, all larger than this */
struct compress_tree_node* right;
/** the parent node - not for tree, but zone parent. One less label */
struct compress_tree_node* parent;
/** the domain name for this node. Pointer to uncompressed memory. */
uint8_t* dname;
/** number of labels in domain name, kept to help compare func. */
int labs;
/** offset in packet that points to this dname */
size_t offset;
};
/**
* Find domain name in tree, returns exact and closest match.
* @param tree: root of tree.
* @param dname: pointer to uncompressed dname.
* @param labs: number of labels in domain name.
* @param match: closest or exact match.
* guaranteed to be smaller or equal to the sought dname.
* can be null if the tree is empty.
* @param matchlabels: number of labels that match with closest match.
* can be zero is there is no match.
* @return: 0 if no exact match.
*/
static int
compress_tree_search(struct compress_tree_node* tree, uint8_t* dname,
int labs, struct compress_tree_node** match, int* matchlabels)
{
int c, n, closen=0;
struct compress_tree_node* p = tree;
struct compress_tree_node* close = 0;
while(p) {
if((c = dname_lab_cmp(dname, labs, p->dname, p->labs, &n))
== 0) {
*matchlabels = n;
*match = p;
return 1;
}
if(c<0) p = p->left;
else {
closen = n;
close = p; /* p->dname is smaller than dname */
p = p->right;
}
}
*matchlabels = closen;
*match = close;
return 0;
}
/**
* Lookup a domain name in compression tree.
* @param tree: root of tree (not the node with '.').
* @param dname: pointer to uncompressed dname.
* @param labs: number of labels in domain name.
* @return: 0 if not found or compress treenode with best compression.
*/
static struct compress_tree_node*
compress_tree_lookup(struct compress_tree_node* tree, uint8_t* dname,
int labs)
{
struct compress_tree_node* p;
int m;
if(labs <= 1)
return 0; /* do not compress root node */
if(compress_tree_search(tree, dname, labs, &p, &m)) {
/* exact match */
return p;
}
/* return some ancestor of p that compresses well. */
if(m>1) {
/* www.example.com. (labs=4) matched foo.example.com.(labs=4)
* then matchcount = 3. need to go up. */
while(p && p->labs > m)
p = p->parent;
return p;
}
return 0;
}
/**
* Insert node into domain name compression tree.
* @param tree: root of tree (may be modified)
* @param dname: pointer to uncompressed dname (stored in tree).
* @param labs: number of labels in dname.
* @param offset: offset into packet for dname.
* @param region: how to allocate memory for new node.
* @return new node or 0 on malloc failure.
*/
static struct compress_tree_node*
compress_tree_insert(struct compress_tree_node** tree, uint8_t* dname,
int labs, size_t offset, region_type* region)
{
int c, m;
struct compress_tree_node* p, **prev;
struct compress_tree_node* n = (struct compress_tree_node*)
region_alloc(region, sizeof(struct compress_tree_node));
if(!n) return 0;
n->left = 0;
n->right = 0;
n->parent = 0;
n->dname = dname;
n->labs = labs;
n->offset = offset;
/* find spot to insert it into */
prev = tree;
p = *tree;
while(p) {
c = dname_lab_cmp(dname, labs, p->dname, p->labs, &m);
log_assert(c != 0); /* may not already be in tree */
if(c==0) return p; /* insert only once */
if(c<0) {
prev = &p->left;
p = p->left;
} else {
prev = &p->right;
p = p->right;
}
}
*prev = n;
return n;
}
/**
* Store domain name and ancestors into compression tree.
* @param tree: root of tree (may be modified)
* @param dname: pointer to uncompressed dname (stored in tree).
* @param labs: number of labels in dname.
* @param offset: offset into packet for dname.
* @param region: how to allocate memory for new node.
* @param closest: match from previous lookup, used to compress dname.
* may be NULL if no previous match.
* if the tree has an ancestor of dname already, this must be it.
* @return: 0 on memory error.
*/
static int
compress_tree_store(struct compress_tree_node** tree, uint8_t* dname,
int labs, size_t offset, region_type* region,
struct compress_tree_node* closest)
{
uint8_t lablen;
struct compress_tree_node** lastparentptr = 0;
struct compress_tree_node* newnode;
int uplabs = labs-1; /* does not store root in tree */
if(closest) uplabs = labs - closest->labs;
log_assert(uplabs >= 0);
while(uplabs--) {
if(offset > PTR_MAX_OFFSET) {
if(lastparentptr)
*lastparentptr = closest;
return 1; /* compression pointer no longer useful */
}
/* store dname, labs, offset */
if(!(newnode = compress_tree_insert(tree, dname, labs, offset,
region))) {
if(lastparentptr)
*lastparentptr = closest;
return 0;
}
if(lastparentptr)
*lastparentptr = newnode;
lastparentptr = &newnode->parent;
/* next label */
lablen = *dname++;
dname += lablen;
offset += lablen+1;
labs--;
}
if(lastparentptr)
*lastparentptr = closest;
return 1;
}
/** bake dname compression */
static int
bakedname(struct compress_tree_node** tree, region_type* region,
ldns_buffer* pkt, struct packed_rrset_key* rk)
{
/* see if this name can be compressed */
size_t pos = ldns_buffer_position(pkt);
struct compress_tree_node* p;
int labs = dname_count_labels(rk->dname);
p = compress_tree_lookup(*tree, rk->dname, labs);
if(p && p->offset <= PTR_MAX_OFFSET) {
/* compress it */
int labcopy = labs - p->labs;
uint8_t lablen;
uint8_t* from = rk->dname;
uint16_t ptr;
/* copy the first couple of labels */
while(labcopy--) {
lablen = *from++;
ldns_buffer_write_u8(pkt, lablen);
ldns_buffer_write(pkt, from, lablen);
from += lablen;
}
/* insert compression ptr */
ptr = (uint16_t)(0xc000 | p->offset);
ldns_buffer_write_u16(pkt, ptr);
} else {
/* uncompressed */
ldns_buffer_write(pkt, rk->dname, rk->dname_len);
}
/* store this name for future compression */
if(!compress_tree_store(tree, rk->dname, labs, pos, region, p))
return 0;
return 1;
}
/** store rrset in iov vector */
static int
packed_rrset_iov(struct ub_packed_rrset_key* key, ldns_buffer* pkt,
uint16_t* num_rrs, uint32_t timenow, region_type* region,
int do_data, int do_sig, struct compress_tree_node** tree)
{
size_t i;
struct packed_rrset_data* data = (struct packed_rrset_data*)
key->entry.data;
if(do_data) {
*num_rrs += data->count;
for(i=0; i<data->count; i++) {
if(1) { /* compression */
if(!bakedname(tree, region, pkt, &key->rk))
return 0;
ldns_buffer_write(pkt,
&key->rk.dname[key->rk.dname_len], 4);
} else {
/* no compression */
ldns_buffer_write(pkt, key->rk.dname,
key->rk.dname_len + 4);
}
ldns_buffer_write_u32(pkt, data->rr_ttl[i]-timenow);
ldns_buffer_write(pkt, data->rr_data[i],
data->rr_len[i]);
}
}
/* insert rrsigs */
if(do_sig) {
size_t total = data->count+data->rrsig_count;
*num_rrs += data->rrsig_count;
for(i=data->count; i<total; i++) {
/* no compression of dnames yet */
ldns_buffer_write(pkt, key->rk.dname,
key->rk.dname_len);
ldns_buffer_write_u16(pkt, LDNS_RR_TYPE_RRSIG);
ldns_buffer_write(pkt, &(key->rk.dname[
key->rk.dname_len+2]), sizeof(uint16_t));
ldns_buffer_write_u32(pkt, data->rr_ttl[i]-timenow);
ldns_buffer_write(pkt, data->rr_data[i],
data->rr_len[i]);
}
}
return 1;
}
/** store msg section in iov vector */
static int
insert_section(struct reply_info* rep, size_t num_rrsets, uint16_t* num_rrs,
ldns_buffer* pkt, size_t rrsets_before, uint32_t timenow,
region_type* region, int addit, struct compress_tree_node** tree)
{
size_t i;
*num_rrs = 0;
if(!addit) {
for(i=0; i<num_rrsets; i++)
if(!packed_rrset_iov(rep->rrsets[rrsets_before+i], pkt,
num_rrs, timenow, region, 1, 1, tree))
return 0;
} else {
for(i=0; i<num_rrsets; i++)
if(!packed_rrset_iov(rep->rrsets[rrsets_before+i], pkt,
num_rrs, timenow, region, 1, 0, tree))
return 0;
for(i=0; i<num_rrsets; i++)
if(!packed_rrset_iov(rep->rrsets[rrsets_before+i], pkt,
num_rrs, timenow, region, 0, 1, tree))
return 0;
}
return 1;
}
int reply_info_encode(struct query_info* qinfo, struct reply_info* rep,
uint16_t id, uint16_t flags, ldns_buffer* buffer, uint32_t timenow,
region_type* region)
{
uint16_t ancount=0, nscount=0, arcount=0;
struct compress_tree_node* tree = 0;
ldns_buffer_clear(buffer);
if(ldns_buffer_capacity(buffer) < LDNS_HEADER_SIZE)
return 0;
ldns_buffer_write(buffer, &id, sizeof(uint16_t));
ldns_buffer_write_u16(buffer, flags);
ldns_buffer_write_u16(buffer, rep->qdcount);
/* skip an, ns, ar counts */
ldns_buffer_set_position(buffer, LDNS_HEADER_SIZE);
/* insert query section */
if(rep->qdcount) {
if(ldns_buffer_remaining(buffer) <
qinfo->qnamesize+sizeof(uint16_t)*2)
return 0; /* buffer too small */
if(!compress_tree_store(&tree, qinfo->qname,
dname_count_labels(qinfo->qname),
ldns_buffer_position(buffer), region, NULL))
return 0;
ldns_buffer_write(buffer, qinfo->qname, qinfo->qnamesize);
ldns_buffer_write_u16(buffer, qinfo->qtype);
ldns_buffer_write_u16(buffer, qinfo->qclass);
}
/* insert answer section */
if(!insert_section(rep, rep->an_numrrsets, &ancount, buffer,
0, timenow, region, 0, &tree))
return 0;
ldns_buffer_write_u16_at(buffer, 6, ancount);
/* insert auth section */
if(!insert_section(rep, rep->ns_numrrsets, &nscount, buffer,
rep->an_numrrsets, timenow, region, 0, &tree))
return 0;
ldns_buffer_write_u16_at(buffer, 8, nscount);
/* insert add section */
if(!insert_section(rep, rep->ar_numrrsets, &arcount, buffer,
rep->an_numrrsets + rep->ns_numrrsets, timenow, region,
1, &tree))
return 0;
ldns_buffer_write_u16_at(buffer, 10, arcount);
ldns_buffer_flip(buffer);
return 1;
}
void
reply_info_answer_iov(struct reply_info* rep, uint16_t qid,
uint16_t qflags, struct comm_reply* comrep, int cached)
{
/* [0]=reserved for tcplen, [1]=id, [2]=flags, [3]=message */
struct iovec iov[4];
iov[1].iov_base = (void*)&qid;
iov[1].iov_len = sizeof(uint16_t);
if(!cached) {
/* original flags, copy RD bit from query. */
qflags = rep->flags | (qflags & BIT_RD);
} else {
/* remove AA bit, copy RD and CD bits from query. */
qflags = (rep->flags & ~BIT_AA) | (qflags & (BIT_RD|BIT_CD));
}
log_assert(qflags & BIT_QR); /* QR bit must be on in our replies */
qflags = htons(qflags);
iov[2].iov_base = (void*)&qflags;
iov[2].iov_len = sizeof(uint16_t);
iov[3].iov_base = (void*)rep->reply;
iov[3].iov_len = rep->replysize;
comm_point_send_reply_iov(comrep, iov, 4);
}
struct msgreply_entry*
query_info_entrysetup(struct query_info* q, struct reply_info* r,
hashvalue_t h)
{
struct msgreply_entry* e = (struct msgreply_entry*)malloc(
sizeof(struct msgreply_entry));
if(!e) return NULL;
memcpy(&e->key, q, sizeof(*q));
e->entry.hash = h;
e->entry.key = e;
e->entry.data = r;
lock_rw_init(&e->entry.lock);
lock_protect(&e->entry.lock, &e->key, sizeof(e->key));
lock_protect(&e->entry.lock, &e->entry.hash, sizeof(e->entry.hash) +
sizeof(e->entry.key) + sizeof(e->entry.data));
lock_protect(&e->entry.lock, e->key.qname, e->key.qnamesize);
q->qname = NULL;
return e;
}