mirror of
https://github.com/NLnetLabs/unbound.git
synced 2025-12-18 23:06:06 -05:00
Some checks failed
ci / build (push) Has been cancelled
other streams on the http2 session are not affected by a drop, and can clean up properly if also dropped. Fix http2 send reply so that when there is a send failure is does not recurse into the mesh functions and also does not drop the connection due to the condition of one stream.
7055 lines
197 KiB
C
7055 lines
197 KiB
C
/*
|
|
* util/netevent.c - event notification
|
|
*
|
|
* Copyright (c) 2007, NLnet Labs. All rights reserved.
|
|
*
|
|
* This software is open source.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
*
|
|
* Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* Neither the name of the NLNET LABS nor the names of its contributors may
|
|
* be used to endorse or promote products derived from this software without
|
|
* specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
|
|
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/**
|
|
* \file
|
|
*
|
|
* This file contains event notification functions.
|
|
*/
|
|
#include "config.h"
|
|
#include "util/netevent.h"
|
|
#include "util/ub_event.h"
|
|
#include "util/log.h"
|
|
#include "util/net_help.h"
|
|
#include "util/tcp_conn_limit.h"
|
|
#include "util/fptr_wlist.h"
|
|
#include "util/proxy_protocol.h"
|
|
#include "util/timeval_func.h"
|
|
#include "sldns/pkthdr.h"
|
|
#include "sldns/sbuffer.h"
|
|
#include "sldns/str2wire.h"
|
|
#include "dnstap/dnstap.h"
|
|
#include "dnscrypt/dnscrypt.h"
|
|
#include "services/listen_dnsport.h"
|
|
#include "util/random.h"
|
|
#ifdef HAVE_SYS_TYPES_H
|
|
#include <sys/types.h>
|
|
#endif
|
|
#ifdef HAVE_SYS_SOCKET_H
|
|
#include <sys/socket.h>
|
|
#endif
|
|
#ifdef HAVE_NETDB_H
|
|
#include <netdb.h>
|
|
#endif
|
|
#ifdef HAVE_POLL_H
|
|
#include <poll.h>
|
|
#endif
|
|
|
|
#ifdef HAVE_OPENSSL_SSL_H
|
|
#include <openssl/ssl.h>
|
|
#endif
|
|
#ifdef HAVE_OPENSSL_ERR_H
|
|
#include <openssl/err.h>
|
|
#endif
|
|
|
|
#ifdef HAVE_NGTCP2
|
|
#include <ngtcp2/ngtcp2.h>
|
|
#include <ngtcp2/ngtcp2_crypto.h>
|
|
#endif
|
|
|
|
#ifdef HAVE_LINUX_NET_TSTAMP_H
|
|
#include <linux/net_tstamp.h>
|
|
#endif
|
|
|
|
/* -------- Start of local definitions -------- */
|
|
/** if CMSG_ALIGN is not defined on this platform, a workaround */
|
|
#ifndef CMSG_ALIGN
|
|
# ifdef __CMSG_ALIGN
|
|
# define CMSG_ALIGN(n) __CMSG_ALIGN(n)
|
|
# elif defined(CMSG_DATA_ALIGN)
|
|
# define CMSG_ALIGN _CMSG_DATA_ALIGN
|
|
# else
|
|
# define CMSG_ALIGN(len) (((len)+sizeof(long)-1) & ~(sizeof(long)-1))
|
|
# endif
|
|
#endif
|
|
|
|
/** if CMSG_LEN is not defined on this platform, a workaround */
|
|
#ifndef CMSG_LEN
|
|
# define CMSG_LEN(len) (CMSG_ALIGN(sizeof(struct cmsghdr))+(len))
|
|
#endif
|
|
|
|
/** if CMSG_SPACE is not defined on this platform, a workaround */
|
|
#ifndef CMSG_SPACE
|
|
# ifdef _CMSG_HDR_ALIGN
|
|
# define CMSG_SPACE(l) (CMSG_ALIGN(l)+_CMSG_HDR_ALIGN(sizeof(struct cmsghdr)))
|
|
# else
|
|
# define CMSG_SPACE(l) (CMSG_ALIGN(l)+CMSG_ALIGN(sizeof(struct cmsghdr)))
|
|
# endif
|
|
#endif
|
|
|
|
/** The TCP writing query timeout in milliseconds */
|
|
#define TCP_QUERY_TIMEOUT 120000
|
|
/** The minimum actual TCP timeout to use, regardless of what we advertise,
|
|
* in msec */
|
|
#define TCP_QUERY_TIMEOUT_MINIMUM 200
|
|
|
|
#ifndef NONBLOCKING_IS_BROKEN
|
|
/** number of UDP reads to perform per read indication from select */
|
|
#define NUM_UDP_PER_SELECT 100
|
|
#else
|
|
#define NUM_UDP_PER_SELECT 1
|
|
#endif
|
|
|
|
/** timeout in millisec to wait for write to unblock, packets dropped after.*/
|
|
#define SEND_BLOCKED_WAIT_TIMEOUT 200
|
|
/** max number of times to wait for write to unblock, packets dropped after.*/
|
|
#define SEND_BLOCKED_MAX_RETRY 5
|
|
|
|
/** Let's make timestamping code cleaner and redefine SO_TIMESTAMP* */
|
|
#ifndef SO_TIMESTAMP
|
|
#define SO_TIMESTAMP 29
|
|
#endif
|
|
#ifndef SO_TIMESTAMPNS
|
|
#define SO_TIMESTAMPNS 35
|
|
#endif
|
|
#ifndef SO_TIMESTAMPING
|
|
#define SO_TIMESTAMPING 37
|
|
#endif
|
|
/**
|
|
* The internal event structure for keeping ub_event info for the event.
|
|
* Possibly other structures (list, tree) this is part of.
|
|
*/
|
|
struct internal_event {
|
|
/** the comm base */
|
|
struct comm_base* base;
|
|
/** ub_event event type */
|
|
struct ub_event* ev;
|
|
};
|
|
|
|
/**
|
|
* Internal base structure, so that every thread has its own events.
|
|
*/
|
|
struct internal_base {
|
|
/** ub_event event_base type. */
|
|
struct ub_event_base* base;
|
|
/** seconds time pointer points here */
|
|
time_t secs;
|
|
/** timeval with current time */
|
|
struct timeval now;
|
|
/** the event used for slow_accept timeouts */
|
|
struct ub_event* slow_accept;
|
|
/** true if slow_accept is enabled */
|
|
int slow_accept_enabled;
|
|
/** last log time for slow logging of file descriptor errors */
|
|
time_t last_slow_log;
|
|
/** last log time for slow logging of write wait failures */
|
|
time_t last_writewait_log;
|
|
};
|
|
|
|
/**
|
|
* Internal timer structure, to store timer event in.
|
|
*/
|
|
struct internal_timer {
|
|
/** the super struct from which derived */
|
|
struct comm_timer super;
|
|
/** the comm base */
|
|
struct comm_base* base;
|
|
/** ub_event event type */
|
|
struct ub_event* ev;
|
|
/** is timer enabled */
|
|
uint8_t enabled;
|
|
};
|
|
|
|
/**
|
|
* Internal signal structure, to store signal event in.
|
|
*/
|
|
struct internal_signal {
|
|
/** ub_event event type */
|
|
struct ub_event* ev;
|
|
/** next in signal list */
|
|
struct internal_signal* next;
|
|
};
|
|
|
|
/** create a tcp handler with a parent */
|
|
static struct comm_point* comm_point_create_tcp_handler(
|
|
struct comm_base *base, struct comm_point* parent, size_t bufsize,
|
|
struct sldns_buffer* spoolbuf, comm_point_callback_type* callback,
|
|
void* callback_arg, struct unbound_socket* socket);
|
|
|
|
/* -------- End of local definitions -------- */
|
|
|
|
struct comm_base*
|
|
comm_base_create(int sigs)
|
|
{
|
|
struct comm_base* b = (struct comm_base*)calloc(1,
|
|
sizeof(struct comm_base));
|
|
const char *evnm="event", *evsys="", *evmethod="";
|
|
|
|
if(!b)
|
|
return NULL;
|
|
b->eb = (struct internal_base*)calloc(1, sizeof(struct internal_base));
|
|
if(!b->eb) {
|
|
free(b);
|
|
return NULL;
|
|
}
|
|
b->eb->base = ub_default_event_base(sigs, &b->eb->secs, &b->eb->now);
|
|
if(!b->eb->base) {
|
|
free(b->eb);
|
|
free(b);
|
|
return NULL;
|
|
}
|
|
ub_comm_base_now(b);
|
|
ub_get_event_sys(b->eb->base, &evnm, &evsys, &evmethod);
|
|
verbose(VERB_ALGO, "%s %s uses %s method.", evnm, evsys, evmethod);
|
|
return b;
|
|
}
|
|
|
|
struct comm_base*
|
|
comm_base_create_event(struct ub_event_base* base)
|
|
{
|
|
struct comm_base* b = (struct comm_base*)calloc(1,
|
|
sizeof(struct comm_base));
|
|
if(!b)
|
|
return NULL;
|
|
b->eb = (struct internal_base*)calloc(1, sizeof(struct internal_base));
|
|
if(!b->eb) {
|
|
free(b);
|
|
return NULL;
|
|
}
|
|
b->eb->base = base;
|
|
ub_comm_base_now(b);
|
|
return b;
|
|
}
|
|
|
|
void
|
|
comm_base_delete(struct comm_base* b)
|
|
{
|
|
if(!b)
|
|
return;
|
|
if(b->eb->slow_accept_enabled) {
|
|
if(ub_event_del(b->eb->slow_accept) != 0) {
|
|
log_err("could not event_del slow_accept");
|
|
}
|
|
ub_event_free(b->eb->slow_accept);
|
|
}
|
|
ub_event_base_free(b->eb->base);
|
|
b->eb->base = NULL;
|
|
free(b->eb);
|
|
free(b);
|
|
}
|
|
|
|
void
|
|
comm_base_delete_no_base(struct comm_base* b)
|
|
{
|
|
if(!b)
|
|
return;
|
|
if(b->eb->slow_accept_enabled) {
|
|
if(ub_event_del(b->eb->slow_accept) != 0) {
|
|
log_err("could not event_del slow_accept");
|
|
}
|
|
ub_event_free(b->eb->slow_accept);
|
|
}
|
|
b->eb->base = NULL;
|
|
free(b->eb);
|
|
free(b);
|
|
}
|
|
|
|
void
|
|
comm_base_timept(struct comm_base* b, time_t** tt, struct timeval** tv)
|
|
{
|
|
*tt = &b->eb->secs;
|
|
*tv = &b->eb->now;
|
|
}
|
|
|
|
void
|
|
comm_base_dispatch(struct comm_base* b)
|
|
{
|
|
int retval;
|
|
retval = ub_event_base_dispatch(b->eb->base);
|
|
if(retval < 0) {
|
|
fatal_exit("event_dispatch returned error %d, "
|
|
"errno is %s", retval, strerror(errno));
|
|
}
|
|
}
|
|
|
|
void comm_base_exit(struct comm_base* b)
|
|
{
|
|
if(ub_event_base_loopexit(b->eb->base) != 0) {
|
|
log_err("Could not loopexit");
|
|
}
|
|
}
|
|
|
|
void comm_base_set_slow_accept_handlers(struct comm_base* b,
|
|
void (*stop_acc)(void*), void (*start_acc)(void*), void* arg)
|
|
{
|
|
b->stop_accept = stop_acc;
|
|
b->start_accept = start_acc;
|
|
b->cb_arg = arg;
|
|
}
|
|
|
|
struct ub_event_base* comm_base_internal(struct comm_base* b)
|
|
{
|
|
return b->eb->base;
|
|
}
|
|
|
|
struct ub_event* comm_point_internal(struct comm_point* c)
|
|
{
|
|
return c->ev->ev;
|
|
}
|
|
|
|
/** see if errno for udp has to be logged or not uses globals */
|
|
static int
|
|
udp_send_errno_needs_log(struct sockaddr* addr, socklen_t addrlen)
|
|
{
|
|
/* do not log transient errors (unless high verbosity) */
|
|
#if defined(ENETUNREACH) || defined(EHOSTDOWN) || defined(EHOSTUNREACH) || defined(ENETDOWN)
|
|
switch(errno) {
|
|
# ifdef ENETUNREACH
|
|
case ENETUNREACH:
|
|
# endif
|
|
# ifdef EHOSTDOWN
|
|
case EHOSTDOWN:
|
|
# endif
|
|
# ifdef EHOSTUNREACH
|
|
case EHOSTUNREACH:
|
|
# endif
|
|
# ifdef ENETDOWN
|
|
case ENETDOWN:
|
|
# endif
|
|
case EPERM:
|
|
case EACCES:
|
|
if(verbosity < VERB_ALGO)
|
|
return 0;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
#endif
|
|
/* permission denied is gotten for every send if the
|
|
* network is disconnected (on some OS), squelch it */
|
|
if( ((errno == EPERM)
|
|
# ifdef EADDRNOTAVAIL
|
|
/* 'Cannot assign requested address' also when disconnected */
|
|
|| (errno == EADDRNOTAVAIL)
|
|
# endif
|
|
) && verbosity < VERB_ALGO)
|
|
return 0;
|
|
# ifdef EADDRINUSE
|
|
/* If SO_REUSEADDR is set, we could try to connect to the same server
|
|
* from the same source port twice. */
|
|
if(errno == EADDRINUSE && verbosity < VERB_DETAIL)
|
|
return 0;
|
|
# endif
|
|
/* squelch errors where people deploy AAAA ::ffff:bla for
|
|
* authority servers, which we try for intranets. */
|
|
if(errno == EINVAL && addr_is_ip4mapped(
|
|
(struct sockaddr_storage*)addr, addrlen) &&
|
|
verbosity < VERB_DETAIL)
|
|
return 0;
|
|
/* SO_BROADCAST sockopt can give access to 255.255.255.255,
|
|
* but a dns cache does not need it. */
|
|
if(errno == EACCES && addr_is_broadcast(
|
|
(struct sockaddr_storage*)addr, addrlen) &&
|
|
verbosity < VERB_DETAIL)
|
|
return 0;
|
|
# ifdef ENOTCONN
|
|
/* For 0.0.0.0, ::0 targets it can return that socket is not connected.
|
|
* This can be ignored, and the address skipped. It remains
|
|
* possible to send there for completeness in configuration. */
|
|
if(errno == ENOTCONN && addr_is_any(
|
|
(struct sockaddr_storage*)addr, addrlen) &&
|
|
verbosity < VERB_DETAIL)
|
|
return 0;
|
|
# endif
|
|
return 1;
|
|
}
|
|
|
|
int tcp_connect_errno_needs_log(struct sockaddr* addr, socklen_t addrlen)
|
|
{
|
|
return udp_send_errno_needs_log(addr, addrlen);
|
|
}
|
|
|
|
/* send a UDP reply */
|
|
int
|
|
comm_point_send_udp_msg(struct comm_point *c, sldns_buffer* packet,
|
|
struct sockaddr* addr, socklen_t addrlen, int is_connected)
|
|
{
|
|
ssize_t sent;
|
|
log_assert(c->fd != -1);
|
|
#ifdef UNBOUND_DEBUG
|
|
if(sldns_buffer_remaining(packet) == 0)
|
|
log_err("error: send empty UDP packet");
|
|
#endif
|
|
log_assert(addr && addrlen > 0);
|
|
if(!is_connected) {
|
|
sent = sendto(c->fd, (void*)sldns_buffer_begin(packet),
|
|
sldns_buffer_remaining(packet), 0,
|
|
addr, addrlen);
|
|
} else {
|
|
sent = send(c->fd, (void*)sldns_buffer_begin(packet),
|
|
sldns_buffer_remaining(packet), 0);
|
|
}
|
|
if(sent == -1) {
|
|
/* try again and block, waiting for IO to complete,
|
|
* we want to send the answer, and we will wait for
|
|
* the ethernet interface buffer to have space. */
|
|
#ifndef USE_WINSOCK
|
|
if(errno == EAGAIN || errno == EINTR ||
|
|
# ifdef EWOULDBLOCK
|
|
errno == EWOULDBLOCK ||
|
|
# endif
|
|
errno == ENOBUFS) {
|
|
#else
|
|
if(WSAGetLastError() == WSAEINPROGRESS ||
|
|
WSAGetLastError() == WSAEINTR ||
|
|
WSAGetLastError() == WSAENOBUFS ||
|
|
WSAGetLastError() == WSAEWOULDBLOCK) {
|
|
#endif
|
|
int retries = 0;
|
|
/* if we set the fd blocking, other threads suddenly
|
|
* have a blocking fd that they operate on */
|
|
while(sent == -1 && retries < SEND_BLOCKED_MAX_RETRY && (
|
|
#ifndef USE_WINSOCK
|
|
errno == EAGAIN || errno == EINTR ||
|
|
# ifdef EWOULDBLOCK
|
|
errno == EWOULDBLOCK ||
|
|
# endif
|
|
errno == ENOBUFS
|
|
#else
|
|
WSAGetLastError() == WSAEINPROGRESS ||
|
|
WSAGetLastError() == WSAEINTR ||
|
|
WSAGetLastError() == WSAENOBUFS ||
|
|
WSAGetLastError() == WSAEWOULDBLOCK
|
|
#endif
|
|
)) {
|
|
#if defined(HAVE_POLL) || defined(USE_WINSOCK)
|
|
int send_nobufs = (
|
|
#ifndef USE_WINSOCK
|
|
errno == ENOBUFS
|
|
#else
|
|
WSAGetLastError() == WSAENOBUFS
|
|
#endif
|
|
);
|
|
struct pollfd p;
|
|
int pret;
|
|
memset(&p, 0, sizeof(p));
|
|
p.fd = c->fd;
|
|
p.events = POLLOUT
|
|
#ifndef USE_WINSOCK
|
|
| POLLERR | POLLHUP
|
|
#endif
|
|
;
|
|
# ifndef USE_WINSOCK
|
|
pret = poll(&p, 1, SEND_BLOCKED_WAIT_TIMEOUT);
|
|
# else
|
|
pret = WSAPoll(&p, 1,
|
|
SEND_BLOCKED_WAIT_TIMEOUT);
|
|
# endif
|
|
if(pret == 0) {
|
|
/* timer expired */
|
|
struct comm_base* b = c->ev->base;
|
|
if(b->eb->last_writewait_log+SLOW_LOG_TIME <=
|
|
b->eb->secs) {
|
|
b->eb->last_writewait_log = b->eb->secs;
|
|
verbose(VERB_OPS, "send udp blocked "
|
|
"for long, dropping packet.");
|
|
}
|
|
return 0;
|
|
} else if(pret < 0 &&
|
|
#ifndef USE_WINSOCK
|
|
errno != EAGAIN && errno != EINTR &&
|
|
# ifdef EWOULDBLOCK
|
|
errno != EWOULDBLOCK &&
|
|
# endif
|
|
errno != ENOMEM && errno != ENOBUFS
|
|
#else
|
|
WSAGetLastError() != WSAEINPROGRESS &&
|
|
WSAGetLastError() != WSAEINTR &&
|
|
WSAGetLastError() != WSAENOBUFS &&
|
|
WSAGetLastError() != WSAEWOULDBLOCK
|
|
#endif
|
|
) {
|
|
log_err("poll udp out failed: %s",
|
|
sock_strerror(errno));
|
|
return 0;
|
|
} else if((pret < 0 &&
|
|
#ifndef USE_WINSOCK
|
|
( errno == ENOBUFS /* Maybe some systems */
|
|
|| errno == ENOMEM /* Linux */
|
|
|| errno == EAGAIN) /* Macos, solaris, openbsd */
|
|
#else
|
|
WSAGetLastError() == WSAENOBUFS
|
|
#endif
|
|
) || (send_nobufs && retries > 0)) {
|
|
/* ENOBUFS/ENOMEM/EAGAIN, and poll
|
|
* returned without
|
|
* a timeout. Or the retried send call
|
|
* returned ENOBUFS/ENOMEM/EAGAIN.
|
|
* It is good to wait a bit for the
|
|
* error to clear. */
|
|
/* The timeout is 20*(2^(retries+1)),
|
|
* it increases exponentially, starting
|
|
* at 40 msec. After 5 tries, 1240 msec
|
|
* have passed in total, when poll
|
|
* returned the error, and 1200 msec
|
|
* when send returned the errors. */
|
|
#ifndef USE_WINSOCK
|
|
pret = poll(NULL, 0, (SEND_BLOCKED_WAIT_TIMEOUT/10)<<(retries+1));
|
|
#else
|
|
Sleep((SEND_BLOCKED_WAIT_TIMEOUT/10)<<(retries+1));
|
|
pret = 0;
|
|
#endif
|
|
if(pret < 0
|
|
#ifndef USE_WINSOCK
|
|
&& errno != EAGAIN && errno != EINTR &&
|
|
# ifdef EWOULDBLOCK
|
|
errno != EWOULDBLOCK &&
|
|
# endif
|
|
errno != ENOMEM && errno != ENOBUFS
|
|
#else
|
|
/* Sleep does not error */
|
|
#endif
|
|
) {
|
|
log_err("poll udp out timer failed: %s",
|
|
sock_strerror(errno));
|
|
}
|
|
}
|
|
#endif /* defined(HAVE_POLL) || defined(USE_WINSOCK) */
|
|
retries++;
|
|
if (!is_connected) {
|
|
sent = sendto(c->fd, (void*)sldns_buffer_begin(packet),
|
|
sldns_buffer_remaining(packet), 0,
|
|
addr, addrlen);
|
|
} else {
|
|
sent = send(c->fd, (void*)sldns_buffer_begin(packet),
|
|
sldns_buffer_remaining(packet), 0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if(sent == -1) {
|
|
if(!udp_send_errno_needs_log(addr, addrlen))
|
|
return 0;
|
|
if (!is_connected) {
|
|
verbose(VERB_OPS, "sendto failed: %s", sock_strerror(errno));
|
|
} else {
|
|
verbose(VERB_OPS, "send failed: %s", sock_strerror(errno));
|
|
}
|
|
if(addr)
|
|
log_addr(VERB_OPS, "remote address is",
|
|
(struct sockaddr_storage*)addr, addrlen);
|
|
return 0;
|
|
} else if((size_t)sent != sldns_buffer_remaining(packet)) {
|
|
log_err("sent %d in place of %d bytes",
|
|
(int)sent, (int)sldns_buffer_remaining(packet));
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
#if defined(AF_INET6) && defined(IPV6_PKTINFO) && (defined(HAVE_RECVMSG) || defined(HAVE_SENDMSG))
|
|
/** print debug ancillary info */
|
|
static void p_ancil(const char* str, struct comm_reply* r)
|
|
{
|
|
if(r->srctype != 4 && r->srctype != 6) {
|
|
log_info("%s: unknown srctype %d", str, r->srctype);
|
|
return;
|
|
}
|
|
|
|
if(r->srctype == 6) {
|
|
#ifdef IPV6_PKTINFO
|
|
char buf[1024];
|
|
if(inet_ntop(AF_INET6, &r->pktinfo.v6info.ipi6_addr,
|
|
buf, (socklen_t)sizeof(buf)) == 0) {
|
|
(void)strlcpy(buf, "(inet_ntop error)", sizeof(buf));
|
|
}
|
|
buf[sizeof(buf)-1]=0;
|
|
log_info("%s: %s %d", str, buf, r->pktinfo.v6info.ipi6_ifindex);
|
|
#endif
|
|
} else if(r->srctype == 4) {
|
|
#ifdef IP_PKTINFO
|
|
char buf1[1024], buf2[1024];
|
|
if(inet_ntop(AF_INET, &r->pktinfo.v4info.ipi_addr,
|
|
buf1, (socklen_t)sizeof(buf1)) == 0) {
|
|
(void)strlcpy(buf1, "(inet_ntop error)", sizeof(buf1));
|
|
}
|
|
buf1[sizeof(buf1)-1]=0;
|
|
#ifdef HAVE_STRUCT_IN_PKTINFO_IPI_SPEC_DST
|
|
if(inet_ntop(AF_INET, &r->pktinfo.v4info.ipi_spec_dst,
|
|
buf2, (socklen_t)sizeof(buf2)) == 0) {
|
|
(void)strlcpy(buf2, "(inet_ntop error)", sizeof(buf2));
|
|
}
|
|
buf2[sizeof(buf2)-1]=0;
|
|
#else
|
|
buf2[0]=0;
|
|
#endif
|
|
log_info("%s: %d %s %s", str, r->pktinfo.v4info.ipi_ifindex,
|
|
buf1, buf2);
|
|
#elif defined(IP_RECVDSTADDR)
|
|
char buf1[1024];
|
|
if(inet_ntop(AF_INET, &r->pktinfo.v4addr,
|
|
buf1, (socklen_t)sizeof(buf1)) == 0) {
|
|
(void)strlcpy(buf1, "(inet_ntop error)", sizeof(buf1));
|
|
}
|
|
buf1[sizeof(buf1)-1]=0;
|
|
log_info("%s: %s", str, buf1);
|
|
#endif /* IP_PKTINFO or PI_RECVDSTDADDR */
|
|
}
|
|
}
|
|
#endif /* AF_INET6 && IPV6_PKTINFO && HAVE_RECVMSG||HAVE_SENDMSG */
|
|
|
|
/** send a UDP reply over specified interface*/
|
|
static int
|
|
comm_point_send_udp_msg_if(struct comm_point *c, sldns_buffer* packet,
|
|
struct sockaddr* addr, socklen_t addrlen, struct comm_reply* r)
|
|
{
|
|
#if defined(AF_INET6) && defined(IPV6_PKTINFO) && defined(HAVE_SENDMSG)
|
|
ssize_t sent;
|
|
struct msghdr msg;
|
|
struct iovec iov[1];
|
|
union {
|
|
struct cmsghdr hdr;
|
|
char buf[256];
|
|
} control;
|
|
#ifndef S_SPLINT_S
|
|
struct cmsghdr *cmsg;
|
|
#endif /* S_SPLINT_S */
|
|
|
|
log_assert(c->fd != -1);
|
|
#ifdef UNBOUND_DEBUG
|
|
if(sldns_buffer_remaining(packet) == 0)
|
|
log_err("error: send empty UDP packet");
|
|
#endif
|
|
log_assert(addr && addrlen > 0);
|
|
|
|
msg.msg_name = addr;
|
|
msg.msg_namelen = addrlen;
|
|
iov[0].iov_base = sldns_buffer_begin(packet);
|
|
iov[0].iov_len = sldns_buffer_remaining(packet);
|
|
msg.msg_iov = iov;
|
|
msg.msg_iovlen = 1;
|
|
msg.msg_control = control.buf;
|
|
#ifndef S_SPLINT_S
|
|
msg.msg_controllen = sizeof(control.buf);
|
|
#endif /* S_SPLINT_S */
|
|
msg.msg_flags = 0;
|
|
|
|
#ifndef S_SPLINT_S
|
|
cmsg = CMSG_FIRSTHDR(&msg);
|
|
if(r->srctype == 4) {
|
|
#ifdef IP_PKTINFO
|
|
void* cmsg_data;
|
|
msg.msg_controllen = CMSG_SPACE(sizeof(struct in_pktinfo));
|
|
log_assert(msg.msg_controllen <= sizeof(control.buf));
|
|
cmsg->cmsg_level = IPPROTO_IP;
|
|
cmsg->cmsg_type = IP_PKTINFO;
|
|
memmove(CMSG_DATA(cmsg), &r->pktinfo.v4info,
|
|
sizeof(struct in_pktinfo));
|
|
/* unset the ifindex to not bypass the routing tables */
|
|
cmsg_data = CMSG_DATA(cmsg);
|
|
((struct in_pktinfo *) cmsg_data)->ipi_ifindex = 0;
|
|
cmsg->cmsg_len = CMSG_LEN(sizeof(struct in_pktinfo));
|
|
/* zero the padding bytes inserted by the CMSG_LEN */
|
|
if(sizeof(struct in_pktinfo) < cmsg->cmsg_len)
|
|
memset(((uint8_t*)(CMSG_DATA(cmsg))) +
|
|
sizeof(struct in_pktinfo), 0, cmsg->cmsg_len
|
|
- sizeof(struct in_pktinfo));
|
|
#elif defined(IP_SENDSRCADDR)
|
|
msg.msg_controllen = CMSG_SPACE(sizeof(struct in_addr));
|
|
log_assert(msg.msg_controllen <= sizeof(control.buf));
|
|
cmsg->cmsg_level = IPPROTO_IP;
|
|
cmsg->cmsg_type = IP_SENDSRCADDR;
|
|
memmove(CMSG_DATA(cmsg), &r->pktinfo.v4addr,
|
|
sizeof(struct in_addr));
|
|
cmsg->cmsg_len = CMSG_LEN(sizeof(struct in_addr));
|
|
/* zero the padding bytes inserted by the CMSG_LEN */
|
|
if(sizeof(struct in_addr) < cmsg->cmsg_len)
|
|
memset(((uint8_t*)(CMSG_DATA(cmsg))) +
|
|
sizeof(struct in_addr), 0, cmsg->cmsg_len
|
|
- sizeof(struct in_addr));
|
|
#else
|
|
verbose(VERB_ALGO, "no IP_PKTINFO or IP_SENDSRCADDR");
|
|
msg.msg_control = NULL;
|
|
#endif /* IP_PKTINFO or IP_SENDSRCADDR */
|
|
} else if(r->srctype == 6) {
|
|
void* cmsg_data;
|
|
msg.msg_controllen = CMSG_SPACE(sizeof(struct in6_pktinfo));
|
|
log_assert(msg.msg_controllen <= sizeof(control.buf));
|
|
cmsg->cmsg_level = IPPROTO_IPV6;
|
|
cmsg->cmsg_type = IPV6_PKTINFO;
|
|
memmove(CMSG_DATA(cmsg), &r->pktinfo.v6info,
|
|
sizeof(struct in6_pktinfo));
|
|
/* unset the ifindex to not bypass the routing tables */
|
|
cmsg_data = CMSG_DATA(cmsg);
|
|
((struct in6_pktinfo *) cmsg_data)->ipi6_ifindex = 0;
|
|
cmsg->cmsg_len = CMSG_LEN(sizeof(struct in6_pktinfo));
|
|
/* zero the padding bytes inserted by the CMSG_LEN */
|
|
if(sizeof(struct in6_pktinfo) < cmsg->cmsg_len)
|
|
memset(((uint8_t*)(CMSG_DATA(cmsg))) +
|
|
sizeof(struct in6_pktinfo), 0, cmsg->cmsg_len
|
|
- sizeof(struct in6_pktinfo));
|
|
} else {
|
|
/* try to pass all 0 to use default route */
|
|
msg.msg_controllen = CMSG_SPACE(sizeof(struct in6_pktinfo));
|
|
log_assert(msg.msg_controllen <= sizeof(control.buf));
|
|
cmsg->cmsg_level = IPPROTO_IPV6;
|
|
cmsg->cmsg_type = IPV6_PKTINFO;
|
|
memset(CMSG_DATA(cmsg), 0, sizeof(struct in6_pktinfo));
|
|
cmsg->cmsg_len = CMSG_LEN(sizeof(struct in6_pktinfo));
|
|
/* zero the padding bytes inserted by the CMSG_LEN */
|
|
if(sizeof(struct in6_pktinfo) < cmsg->cmsg_len)
|
|
memset(((uint8_t*)(CMSG_DATA(cmsg))) +
|
|
sizeof(struct in6_pktinfo), 0, cmsg->cmsg_len
|
|
- sizeof(struct in6_pktinfo));
|
|
}
|
|
#endif /* S_SPLINT_S */
|
|
if(verbosity >= VERB_ALGO && r->srctype != 0)
|
|
p_ancil("send_udp over interface", r);
|
|
sent = sendmsg(c->fd, &msg, 0);
|
|
if(sent == -1) {
|
|
/* try again and block, waiting for IO to complete,
|
|
* we want to send the answer, and we will wait for
|
|
* the ethernet interface buffer to have space. */
|
|
#ifndef USE_WINSOCK
|
|
if(errno == EAGAIN || errno == EINTR ||
|
|
# ifdef EWOULDBLOCK
|
|
errno == EWOULDBLOCK ||
|
|
# endif
|
|
errno == ENOBUFS) {
|
|
#else
|
|
if(WSAGetLastError() == WSAEINPROGRESS ||
|
|
WSAGetLastError() == WSAEINTR ||
|
|
WSAGetLastError() == WSAENOBUFS ||
|
|
WSAGetLastError() == WSAEWOULDBLOCK) {
|
|
#endif
|
|
int retries = 0;
|
|
while(sent == -1 && retries < SEND_BLOCKED_MAX_RETRY && (
|
|
#ifndef USE_WINSOCK
|
|
errno == EAGAIN || errno == EINTR ||
|
|
# ifdef EWOULDBLOCK
|
|
errno == EWOULDBLOCK ||
|
|
# endif
|
|
errno == ENOBUFS
|
|
#else
|
|
WSAGetLastError() == WSAEINPROGRESS ||
|
|
WSAGetLastError() == WSAEINTR ||
|
|
WSAGetLastError() == WSAENOBUFS ||
|
|
WSAGetLastError() == WSAEWOULDBLOCK
|
|
#endif
|
|
)) {
|
|
#if defined(HAVE_POLL) || defined(USE_WINSOCK)
|
|
int send_nobufs = (
|
|
#ifndef USE_WINSOCK
|
|
errno == ENOBUFS
|
|
#else
|
|
WSAGetLastError() == WSAENOBUFS
|
|
#endif
|
|
);
|
|
struct pollfd p;
|
|
int pret;
|
|
memset(&p, 0, sizeof(p));
|
|
p.fd = c->fd;
|
|
p.events = POLLOUT
|
|
#ifndef USE_WINSOCK
|
|
| POLLERR | POLLHUP
|
|
#endif
|
|
;
|
|
# ifndef USE_WINSOCK
|
|
pret = poll(&p, 1, SEND_BLOCKED_WAIT_TIMEOUT);
|
|
# else
|
|
pret = WSAPoll(&p, 1,
|
|
SEND_BLOCKED_WAIT_TIMEOUT);
|
|
# endif
|
|
if(pret == 0) {
|
|
/* timer expired */
|
|
struct comm_base* b = c->ev->base;
|
|
if(b->eb->last_writewait_log+SLOW_LOG_TIME <=
|
|
b->eb->secs) {
|
|
b->eb->last_writewait_log = b->eb->secs;
|
|
verbose(VERB_OPS, "send udp blocked "
|
|
"for long, dropping packet.");
|
|
}
|
|
return 0;
|
|
} else if(pret < 0 &&
|
|
#ifndef USE_WINSOCK
|
|
errno != EAGAIN && errno != EINTR &&
|
|
# ifdef EWOULDBLOCK
|
|
errno != EWOULDBLOCK &&
|
|
# endif
|
|
errno != ENOMEM && errno != ENOBUFS
|
|
#else
|
|
WSAGetLastError() != WSAEINPROGRESS &&
|
|
WSAGetLastError() != WSAEINTR &&
|
|
WSAGetLastError() != WSAENOBUFS &&
|
|
WSAGetLastError() != WSAEWOULDBLOCK
|
|
#endif
|
|
) {
|
|
log_err("poll udp out failed: %s",
|
|
sock_strerror(errno));
|
|
return 0;
|
|
} else if((pret < 0 &&
|
|
#ifndef USE_WINSOCK
|
|
( errno == ENOBUFS /* Maybe some systems */
|
|
|| errno == ENOMEM /* Linux */
|
|
|| errno == EAGAIN) /* Macos, solaris, openbsd */
|
|
#else
|
|
WSAGetLastError() == WSAENOBUFS
|
|
#endif
|
|
) || (send_nobufs && retries > 0)) {
|
|
/* ENOBUFS/ENOMEM/EAGAIN, and poll
|
|
* returned without
|
|
* a timeout. Or the retried send call
|
|
* returned ENOBUFS/ENOMEM/EAGAIN.
|
|
* It is good to wait a bit for the
|
|
* error to clear. */
|
|
/* The timeout is 20*(2^(retries+1)),
|
|
* it increases exponentially, starting
|
|
* at 40 msec. After 5 tries, 1240 msec
|
|
* have passed in total, when poll
|
|
* returned the error, and 1200 msec
|
|
* when send returned the errors. */
|
|
#ifndef USE_WINSOCK
|
|
pret = poll(NULL, 0, (SEND_BLOCKED_WAIT_TIMEOUT/10)<<(retries+1));
|
|
#else
|
|
Sleep((SEND_BLOCKED_WAIT_TIMEOUT/10)<<(retries+1));
|
|
pret = 0;
|
|
#endif
|
|
if(pret < 0
|
|
#ifndef USE_WINSOCK
|
|
&& errno != EAGAIN && errno != EINTR &&
|
|
# ifdef EWOULDBLOCK
|
|
errno != EWOULDBLOCK &&
|
|
# endif
|
|
errno != ENOMEM && errno != ENOBUFS
|
|
#else /* USE_WINSOCK */
|
|
/* Sleep does not error */
|
|
#endif
|
|
) {
|
|
log_err("poll udp out timer failed: %s",
|
|
sock_strerror(errno));
|
|
}
|
|
}
|
|
#endif /* defined(HAVE_POLL) || defined(USE_WINSOCK) */
|
|
retries++;
|
|
sent = sendmsg(c->fd, &msg, 0);
|
|
}
|
|
}
|
|
}
|
|
if(sent == -1) {
|
|
if(!udp_send_errno_needs_log(addr, addrlen))
|
|
return 0;
|
|
verbose(VERB_OPS, "sendmsg failed: %s", strerror(errno));
|
|
log_addr(VERB_OPS, "remote address is",
|
|
(struct sockaddr_storage*)addr, addrlen);
|
|
#ifdef __NetBSD__
|
|
/* netbsd 7 has IP_PKTINFO for recv but not send */
|
|
if(errno == EINVAL && r->srctype == 4)
|
|
log_err("sendmsg: No support for sendmsg(IP_PKTINFO). "
|
|
"Please disable interface-automatic");
|
|
#endif
|
|
return 0;
|
|
} else if((size_t)sent != sldns_buffer_remaining(packet)) {
|
|
log_err("sent %d in place of %d bytes",
|
|
(int)sent, (int)sldns_buffer_remaining(packet));
|
|
return 0;
|
|
}
|
|
return 1;
|
|
#else
|
|
(void)c;
|
|
(void)packet;
|
|
(void)addr;
|
|
(void)addrlen;
|
|
(void)r;
|
|
log_err("sendmsg: IPV6_PKTINFO not supported");
|
|
return 0;
|
|
#endif /* AF_INET6 && IPV6_PKTINFO && HAVE_SENDMSG */
|
|
}
|
|
|
|
/** return true is UDP receive error needs to be logged */
|
|
static int udp_recv_needs_log(int err)
|
|
{
|
|
switch(err) {
|
|
case EACCES: /* some hosts send ICMP 'Permission Denied' */
|
|
#ifndef USE_WINSOCK
|
|
case ECONNREFUSED:
|
|
# ifdef ENETUNREACH
|
|
case ENETUNREACH:
|
|
# endif
|
|
# ifdef EHOSTDOWN
|
|
case EHOSTDOWN:
|
|
# endif
|
|
# ifdef EHOSTUNREACH
|
|
case EHOSTUNREACH:
|
|
# endif
|
|
# ifdef ENETDOWN
|
|
case ENETDOWN:
|
|
# endif
|
|
#else /* USE_WINSOCK */
|
|
case WSAECONNREFUSED:
|
|
case WSAENETUNREACH:
|
|
case WSAEHOSTDOWN:
|
|
case WSAEHOSTUNREACH:
|
|
case WSAENETDOWN:
|
|
#endif
|
|
if(verbosity >= VERB_ALGO)
|
|
return 1;
|
|
return 0;
|
|
default:
|
|
break;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/** Parses the PROXYv2 header from buf and updates the comm_reply struct.
|
|
* Returns 1 on success, 0 on failure. */
|
|
static int consume_pp2_header(struct sldns_buffer* buf, struct comm_reply* rep,
|
|
int stream) {
|
|
size_t size;
|
|
struct pp2_header *header;
|
|
int err = pp2_read_header(sldns_buffer_begin(buf),
|
|
sldns_buffer_remaining(buf));
|
|
if(err) return 0;
|
|
header = (struct pp2_header*)sldns_buffer_begin(buf);
|
|
size = PP2_HEADER_SIZE + ntohs(header->len);
|
|
if((header->ver_cmd & 0xF) == PP2_CMD_LOCAL) {
|
|
/* A connection from the proxy itself.
|
|
* No need to do anything with addresses. */
|
|
goto done;
|
|
}
|
|
if(header->fam_prot == PP2_UNSPEC_UNSPEC) {
|
|
/* Unspecified family and protocol. This could be used for
|
|
* health checks by proxies.
|
|
* No need to do anything with addresses. */
|
|
goto done;
|
|
}
|
|
/* Read the proxied address */
|
|
switch(header->fam_prot) {
|
|
case PP2_INET_STREAM:
|
|
case PP2_INET_DGRAM:
|
|
{
|
|
struct sockaddr_in* addr =
|
|
(struct sockaddr_in*)&rep->client_addr;
|
|
addr->sin_family = AF_INET;
|
|
addr->sin_addr.s_addr = header->addr.addr4.src_addr;
|
|
addr->sin_port = header->addr.addr4.src_port;
|
|
rep->client_addrlen = (socklen_t)sizeof(struct sockaddr_in);
|
|
}
|
|
/* Ignore the destination address; it should be us. */
|
|
break;
|
|
case PP2_INET6_STREAM:
|
|
case PP2_INET6_DGRAM:
|
|
{
|
|
struct sockaddr_in6* addr =
|
|
(struct sockaddr_in6*)&rep->client_addr;
|
|
memset(addr, 0, sizeof(*addr));
|
|
addr->sin6_family = AF_INET6;
|
|
memcpy(&addr->sin6_addr,
|
|
header->addr.addr6.src_addr, 16);
|
|
addr->sin6_port = header->addr.addr6.src_port;
|
|
rep->client_addrlen = (socklen_t)sizeof(struct sockaddr_in6);
|
|
}
|
|
/* Ignore the destination address; it should be us. */
|
|
break;
|
|
default:
|
|
log_err("proxy_protocol: unsupported family and "
|
|
"protocol 0x%x", (int)header->fam_prot);
|
|
return 0;
|
|
}
|
|
rep->is_proxied = 1;
|
|
done:
|
|
if(!stream) {
|
|
/* We are reading a whole packet;
|
|
* Move the rest of the data to overwrite the PROXYv2 header */
|
|
/* XXX can we do better to avoid memmove? */
|
|
memmove(header, ((char*)header)+size,
|
|
sldns_buffer_limit(buf)-size);
|
|
sldns_buffer_set_limit(buf, sldns_buffer_limit(buf)-size);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
#if defined(AF_INET6) && defined(IPV6_PKTINFO) && defined(HAVE_RECVMSG)
|
|
void
|
|
comm_point_udp_ancil_callback(int fd, short event, void* arg)
|
|
{
|
|
struct comm_reply rep;
|
|
struct msghdr msg;
|
|
struct iovec iov[1];
|
|
ssize_t rcv;
|
|
union {
|
|
struct cmsghdr hdr;
|
|
char buf[256];
|
|
} ancil;
|
|
int i;
|
|
#ifndef S_SPLINT_S
|
|
struct cmsghdr* cmsg;
|
|
#endif /* S_SPLINT_S */
|
|
#ifdef HAVE_LINUX_NET_TSTAMP_H
|
|
struct timespec *ts;
|
|
#endif /* HAVE_LINUX_NET_TSTAMP_H */
|
|
|
|
rep.c = (struct comm_point*)arg;
|
|
log_assert(rep.c->type == comm_udp);
|
|
|
|
if(!(event&UB_EV_READ))
|
|
return;
|
|
log_assert(rep.c && rep.c->buffer && rep.c->fd == fd);
|
|
ub_comm_base_now(rep.c->ev->base);
|
|
for(i=0; i<NUM_UDP_PER_SELECT; i++) {
|
|
sldns_buffer_clear(rep.c->buffer);
|
|
timeval_clear(&rep.c->recv_tv);
|
|
rep.remote_addrlen = (socklen_t)sizeof(rep.remote_addr);
|
|
log_assert(fd != -1);
|
|
log_assert(sldns_buffer_remaining(rep.c->buffer) > 0);
|
|
msg.msg_name = &rep.remote_addr;
|
|
msg.msg_namelen = (socklen_t)sizeof(rep.remote_addr);
|
|
iov[0].iov_base = sldns_buffer_begin(rep.c->buffer);
|
|
iov[0].iov_len = sldns_buffer_remaining(rep.c->buffer);
|
|
msg.msg_iov = iov;
|
|
msg.msg_iovlen = 1;
|
|
msg.msg_control = ancil.buf;
|
|
#ifndef S_SPLINT_S
|
|
msg.msg_controllen = sizeof(ancil.buf);
|
|
#endif /* S_SPLINT_S */
|
|
msg.msg_flags = 0;
|
|
rcv = recvmsg(fd, &msg, MSG_DONTWAIT);
|
|
if(rcv == -1) {
|
|
if(errno != EAGAIN && errno != EINTR
|
|
&& udp_recv_needs_log(errno)) {
|
|
log_err("recvmsg failed: %s", strerror(errno));
|
|
}
|
|
return;
|
|
}
|
|
rep.remote_addrlen = msg.msg_namelen;
|
|
sldns_buffer_skip(rep.c->buffer, rcv);
|
|
sldns_buffer_flip(rep.c->buffer);
|
|
rep.srctype = 0;
|
|
rep.is_proxied = 0;
|
|
#ifndef S_SPLINT_S
|
|
for(cmsg = CMSG_FIRSTHDR(&msg); cmsg != NULL;
|
|
cmsg = CMSG_NXTHDR(&msg, cmsg)) {
|
|
if( cmsg->cmsg_level == IPPROTO_IPV6 &&
|
|
cmsg->cmsg_type == IPV6_PKTINFO) {
|
|
rep.srctype = 6;
|
|
memmove(&rep.pktinfo.v6info, CMSG_DATA(cmsg),
|
|
sizeof(struct in6_pktinfo));
|
|
break;
|
|
#ifdef IP_PKTINFO
|
|
} else if( cmsg->cmsg_level == IPPROTO_IP &&
|
|
cmsg->cmsg_type == IP_PKTINFO) {
|
|
rep.srctype = 4;
|
|
memmove(&rep.pktinfo.v4info, CMSG_DATA(cmsg),
|
|
sizeof(struct in_pktinfo));
|
|
break;
|
|
#elif defined(IP_RECVDSTADDR)
|
|
} else if( cmsg->cmsg_level == IPPROTO_IP &&
|
|
cmsg->cmsg_type == IP_RECVDSTADDR) {
|
|
rep.srctype = 4;
|
|
memmove(&rep.pktinfo.v4addr, CMSG_DATA(cmsg),
|
|
sizeof(struct in_addr));
|
|
break;
|
|
#endif /* IP_PKTINFO or IP_RECVDSTADDR */
|
|
#ifdef HAVE_LINUX_NET_TSTAMP_H
|
|
} else if( cmsg->cmsg_level == SOL_SOCKET &&
|
|
cmsg->cmsg_type == SO_TIMESTAMPNS) {
|
|
ts = (struct timespec *)CMSG_DATA(cmsg);
|
|
TIMESPEC_TO_TIMEVAL(&rep.c->recv_tv, ts);
|
|
} else if( cmsg->cmsg_level == SOL_SOCKET &&
|
|
cmsg->cmsg_type == SO_TIMESTAMPING) {
|
|
ts = (struct timespec *)CMSG_DATA(cmsg);
|
|
TIMESPEC_TO_TIMEVAL(&rep.c->recv_tv, ts);
|
|
} else if( cmsg->cmsg_level == SOL_SOCKET &&
|
|
cmsg->cmsg_type == SO_TIMESTAMP) {
|
|
memmove(&rep.c->recv_tv, CMSG_DATA(cmsg), sizeof(struct timeval));
|
|
#elif defined(SO_TIMESTAMP) && defined(SCM_TIMESTAMP)
|
|
} else if( cmsg->cmsg_level == SOL_SOCKET &&
|
|
cmsg->cmsg_type == SCM_TIMESTAMP) {
|
|
/* FreeBSD and also Linux. */
|
|
memmove(&rep.c->recv_tv, CMSG_DATA(cmsg), sizeof(struct timeval));
|
|
#endif /* HAVE_LINUX_NET_TSTAMP_H */
|
|
}
|
|
}
|
|
|
|
if(verbosity >= VERB_ALGO && rep.srctype != 0)
|
|
p_ancil("receive_udp on interface", &rep);
|
|
#endif /* S_SPLINT_S */
|
|
|
|
if(rep.c->pp2_enabled && !consume_pp2_header(rep.c->buffer,
|
|
&rep, 0)) {
|
|
log_err("proxy_protocol: could not consume PROXYv2 header");
|
|
return;
|
|
}
|
|
if(!rep.is_proxied) {
|
|
rep.client_addrlen = rep.remote_addrlen;
|
|
memmove(&rep.client_addr, &rep.remote_addr,
|
|
rep.remote_addrlen);
|
|
}
|
|
|
|
fptr_ok(fptr_whitelist_comm_point(rep.c->callback));
|
|
if((*rep.c->callback)(rep.c, rep.c->cb_arg, NETEVENT_NOERROR, &rep)) {
|
|
/* send back immediate reply */
|
|
struct sldns_buffer *buffer;
|
|
#ifdef USE_DNSCRYPT
|
|
buffer = rep.c->dnscrypt_buffer;
|
|
#else
|
|
buffer = rep.c->buffer;
|
|
#endif
|
|
(void)comm_point_send_udp_msg_if(rep.c, buffer,
|
|
(struct sockaddr*)&rep.remote_addr,
|
|
rep.remote_addrlen, &rep);
|
|
}
|
|
if(!rep.c || rep.c->fd == -1) /* commpoint closed */
|
|
break;
|
|
}
|
|
}
|
|
#endif /* AF_INET6 && IPV6_PKTINFO && HAVE_RECVMSG */
|
|
|
|
void
|
|
comm_point_udp_callback(int fd, short event, void* arg)
|
|
{
|
|
struct comm_reply rep;
|
|
ssize_t rcv;
|
|
int i;
|
|
struct sldns_buffer *buffer;
|
|
|
|
rep.c = (struct comm_point*)arg;
|
|
log_assert(rep.c->type == comm_udp);
|
|
|
|
if(!(event&UB_EV_READ))
|
|
return;
|
|
log_assert(rep.c && rep.c->buffer && rep.c->fd == fd);
|
|
ub_comm_base_now(rep.c->ev->base);
|
|
for(i=0; i<NUM_UDP_PER_SELECT; i++) {
|
|
sldns_buffer_clear(rep.c->buffer);
|
|
rep.remote_addrlen = (socklen_t)sizeof(rep.remote_addr);
|
|
log_assert(fd != -1);
|
|
log_assert(sldns_buffer_remaining(rep.c->buffer) > 0);
|
|
rcv = recvfrom(fd, (void*)sldns_buffer_begin(rep.c->buffer),
|
|
sldns_buffer_remaining(rep.c->buffer), MSG_DONTWAIT,
|
|
(struct sockaddr*)&rep.remote_addr, &rep.remote_addrlen);
|
|
if(rcv == -1) {
|
|
#ifndef USE_WINSOCK
|
|
if(errno != EAGAIN && errno != EINTR
|
|
&& udp_recv_needs_log(errno))
|
|
log_err("recvfrom %d failed: %s",
|
|
fd, strerror(errno));
|
|
#else
|
|
if(WSAGetLastError() != WSAEINPROGRESS &&
|
|
WSAGetLastError() != WSAECONNRESET &&
|
|
WSAGetLastError()!= WSAEWOULDBLOCK &&
|
|
udp_recv_needs_log(WSAGetLastError()))
|
|
log_err("recvfrom failed: %s",
|
|
wsa_strerror(WSAGetLastError()));
|
|
#endif
|
|
return;
|
|
}
|
|
sldns_buffer_skip(rep.c->buffer, rcv);
|
|
sldns_buffer_flip(rep.c->buffer);
|
|
rep.srctype = 0;
|
|
rep.is_proxied = 0;
|
|
|
|
if(rep.c->pp2_enabled && !consume_pp2_header(rep.c->buffer,
|
|
&rep, 0)) {
|
|
log_err("proxy_protocol: could not consume PROXYv2 header");
|
|
return;
|
|
}
|
|
if(!rep.is_proxied) {
|
|
rep.client_addrlen = rep.remote_addrlen;
|
|
memmove(&rep.client_addr, &rep.remote_addr,
|
|
rep.remote_addrlen);
|
|
}
|
|
|
|
fptr_ok(fptr_whitelist_comm_point(rep.c->callback));
|
|
if((*rep.c->callback)(rep.c, rep.c->cb_arg, NETEVENT_NOERROR, &rep)) {
|
|
/* send back immediate reply */
|
|
#ifdef USE_DNSCRYPT
|
|
buffer = rep.c->dnscrypt_buffer;
|
|
#else
|
|
buffer = rep.c->buffer;
|
|
#endif
|
|
(void)comm_point_send_udp_msg(rep.c, buffer,
|
|
(struct sockaddr*)&rep.remote_addr,
|
|
rep.remote_addrlen, 0);
|
|
}
|
|
if(!rep.c || rep.c->fd != fd) /* commpoint closed to -1 or reused for
|
|
another UDP port. Note rep.c cannot be reused with TCP fd. */
|
|
break;
|
|
}
|
|
}
|
|
|
|
#ifdef HAVE_NGTCP2
|
|
void
|
|
doq_pkt_addr_init(struct doq_pkt_addr* paddr)
|
|
{
|
|
paddr->addrlen = (socklen_t)sizeof(paddr->addr);
|
|
paddr->localaddrlen = (socklen_t)sizeof(paddr->localaddr);
|
|
paddr->ifindex = 0;
|
|
}
|
|
|
|
/** set the ecn on the transmission */
|
|
static void
|
|
doq_set_ecn(int fd, int family, uint32_t ecn)
|
|
{
|
|
unsigned int val = ecn;
|
|
if(family == AF_INET6) {
|
|
if(setsockopt(fd, IPPROTO_IPV6, IPV6_TCLASS, &val,
|
|
(socklen_t)sizeof(val)) == -1) {
|
|
log_err("setsockopt(.. IPV6_TCLASS ..): %s",
|
|
strerror(errno));
|
|
}
|
|
return;
|
|
}
|
|
if(setsockopt(fd, IPPROTO_IP, IP_TOS, &val,
|
|
(socklen_t)sizeof(val)) == -1) {
|
|
log_err("setsockopt(.. IP_TOS ..): %s",
|
|
strerror(errno));
|
|
}
|
|
}
|
|
|
|
/** set the local address in the control ancillary data */
|
|
static void
|
|
doq_set_localaddr_cmsg(struct msghdr* msg, size_t control_size,
|
|
struct doq_addr_storage* localaddr, socklen_t localaddrlen,
|
|
int ifindex)
|
|
{
|
|
#ifndef S_SPLINT_S
|
|
struct cmsghdr* cmsg;
|
|
#endif /* S_SPLINT_S */
|
|
#ifndef S_SPLINT_S
|
|
cmsg = CMSG_FIRSTHDR(msg);
|
|
if(localaddr->sockaddr.in.sin_family == AF_INET) {
|
|
#ifdef IP_PKTINFO
|
|
struct sockaddr_in* sa = (struct sockaddr_in*)localaddr;
|
|
struct in_pktinfo v4info;
|
|
log_assert(localaddrlen >= sizeof(struct sockaddr_in));
|
|
msg->msg_controllen = CMSG_SPACE(sizeof(struct in_pktinfo));
|
|
memset(msg->msg_control, 0, msg->msg_controllen);
|
|
log_assert(msg->msg_controllen <= control_size);
|
|
cmsg->cmsg_level = IPPROTO_IP;
|
|
cmsg->cmsg_type = IP_PKTINFO;
|
|
memset(&v4info, 0, sizeof(v4info));
|
|
# ifdef HAVE_STRUCT_IN_PKTINFO_IPI_SPEC_DST
|
|
memmove(&v4info.ipi_spec_dst, &sa->sin_addr,
|
|
sizeof(struct in_addr));
|
|
# else
|
|
memmove(&v4info.ipi_addr, &sa->sin_addr,
|
|
sizeof(struct in_addr));
|
|
# endif
|
|
v4info.ipi_ifindex = ifindex;
|
|
memmove(CMSG_DATA(cmsg), &v4info, sizeof(struct in_pktinfo));
|
|
cmsg->cmsg_len = CMSG_LEN(sizeof(struct in_pktinfo));
|
|
#elif defined(IP_SENDSRCADDR)
|
|
struct sockaddr_in* sa= (struct sockaddr_in*)localaddr;
|
|
log_assert(localaddrlen >= sizeof(struct sockaddr_in));
|
|
msg->msg_controllen = CMSG_SPACE(sizeof(struct in_addr));
|
|
memset(msg->msg_control, 0, msg->msg_controllen);
|
|
log_assert(msg->msg_controllen <= control_size);
|
|
cmsg->cmsg_level = IPPROTO_IP;
|
|
cmsg->cmsg_type = IP_SENDSRCADDR;
|
|
memmove(CMSG_DATA(cmsg), &sa->sin_addr,
|
|
sizeof(struct in_addr));
|
|
cmsg->cmsg_len = CMSG_LEN(sizeof(struct in_addr));
|
|
#endif
|
|
} else {
|
|
struct sockaddr_in6* sa6 = (struct sockaddr_in6*)localaddr;
|
|
struct in6_pktinfo v6info;
|
|
log_assert(localaddrlen >= sizeof(struct sockaddr_in6));
|
|
msg->msg_controllen = CMSG_SPACE(sizeof(struct in6_pktinfo));
|
|
memset(msg->msg_control, 0, msg->msg_controllen);
|
|
log_assert(msg->msg_controllen <= control_size);
|
|
cmsg->cmsg_level = IPPROTO_IPV6;
|
|
cmsg->cmsg_type = IPV6_PKTINFO;
|
|
memset(&v6info, 0, sizeof(v6info));
|
|
memmove(&v6info.ipi6_addr, &sa6->sin6_addr,
|
|
sizeof(struct in6_addr));
|
|
v6info.ipi6_ifindex = ifindex;
|
|
memmove(CMSG_DATA(cmsg), &v6info, sizeof(struct in6_pktinfo));
|
|
cmsg->cmsg_len = CMSG_LEN(sizeof(struct in6_pktinfo));
|
|
}
|
|
#endif /* S_SPLINT_S */
|
|
/* Ignore unused variables, if no assertions are compiled. */
|
|
(void)localaddrlen;
|
|
(void)control_size;
|
|
}
|
|
|
|
/** write address and port into strings */
|
|
static int
|
|
doq_print_addr_port(struct doq_addr_storage* addr, socklen_t addrlen,
|
|
char* host, size_t hostlen, char* port, size_t portlen)
|
|
{
|
|
if(addr->sockaddr.in.sin_family == AF_INET) {
|
|
struct sockaddr_in* sa = (struct sockaddr_in*)addr;
|
|
log_assert(addrlen >= sizeof(*sa));
|
|
if(inet_ntop(sa->sin_family, &sa->sin_addr, host,
|
|
(socklen_t)hostlen) == 0) {
|
|
log_hex("inet_ntop error: address", &sa->sin_addr,
|
|
sizeof(sa->sin_addr));
|
|
return 0;
|
|
}
|
|
snprintf(port, portlen, "%u", (unsigned)ntohs(sa->sin_port));
|
|
} else if(addr->sockaddr.in.sin_family == AF_INET6) {
|
|
struct sockaddr_in6* sa6 = (struct sockaddr_in6*)addr;
|
|
log_assert(addrlen >= sizeof(*sa6));
|
|
if(inet_ntop(sa6->sin6_family, &sa6->sin6_addr, host,
|
|
(socklen_t)hostlen) == 0) {
|
|
log_hex("inet_ntop error: address", &sa6->sin6_addr,
|
|
sizeof(sa6->sin6_addr));
|
|
return 0;
|
|
}
|
|
snprintf(port, portlen, "%u", (unsigned)ntohs(sa6->sin6_port));
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/** doq store the blocked packet when write has blocked */
|
|
static void
|
|
doq_store_blocked_pkt(struct comm_point* c, struct doq_pkt_addr* paddr,
|
|
uint32_t ecn)
|
|
{
|
|
if(c->doq_socket->have_blocked_pkt)
|
|
return; /* should not happen that we write when there is
|
|
already a blocked write, but if so, drop it. */
|
|
if(sldns_buffer_limit(c->doq_socket->pkt_buf) >
|
|
sldns_buffer_capacity(c->doq_socket->blocked_pkt))
|
|
return; /* impossibly large, drop packet. impossible because
|
|
pkt_buf and blocked_pkt are the same size. */
|
|
c->doq_socket->have_blocked_pkt = 1;
|
|
c->doq_socket->blocked_pkt_pi.ecn = ecn;
|
|
memcpy(c->doq_socket->blocked_paddr, paddr,
|
|
sizeof(*c->doq_socket->blocked_paddr));
|
|
sldns_buffer_clear(c->doq_socket->blocked_pkt);
|
|
sldns_buffer_write(c->doq_socket->blocked_pkt,
|
|
sldns_buffer_begin(c->doq_socket->pkt_buf),
|
|
sldns_buffer_limit(c->doq_socket->pkt_buf));
|
|
sldns_buffer_flip(c->doq_socket->blocked_pkt);
|
|
}
|
|
|
|
void
|
|
doq_send_pkt(struct comm_point* c, struct doq_pkt_addr* paddr, uint32_t ecn)
|
|
{
|
|
struct msghdr msg;
|
|
struct iovec iov[1];
|
|
union {
|
|
struct cmsghdr hdr;
|
|
char buf[256];
|
|
} control;
|
|
ssize_t ret;
|
|
iov[0].iov_base = sldns_buffer_begin(c->doq_socket->pkt_buf);
|
|
iov[0].iov_len = sldns_buffer_limit(c->doq_socket->pkt_buf);
|
|
memset(&msg, 0, sizeof(msg));
|
|
msg.msg_name = (void*)&paddr->addr;
|
|
msg.msg_namelen = paddr->addrlen;
|
|
msg.msg_iov = iov;
|
|
msg.msg_iovlen = 1;
|
|
msg.msg_control = control.buf;
|
|
#ifndef S_SPLINT_S
|
|
msg.msg_controllen = sizeof(control.buf);
|
|
#endif /* S_SPLINT_S */
|
|
msg.msg_flags = 0;
|
|
|
|
doq_set_localaddr_cmsg(&msg, sizeof(control.buf), &paddr->localaddr,
|
|
paddr->localaddrlen, paddr->ifindex);
|
|
doq_set_ecn(c->fd, paddr->addr.sockaddr.in.sin_family, ecn);
|
|
|
|
for(;;) {
|
|
ret = sendmsg(c->fd, &msg, MSG_DONTWAIT);
|
|
if(ret == -1 && errno == EINTR)
|
|
continue;
|
|
break;
|
|
}
|
|
if(ret == -1) {
|
|
#ifndef USE_WINSOCK
|
|
if(errno == EAGAIN ||
|
|
# ifdef EWOULDBLOCK
|
|
errno == EWOULDBLOCK ||
|
|
# endif
|
|
errno == ENOBUFS)
|
|
#else
|
|
if(WSAGetLastError() == WSAEINPROGRESS ||
|
|
WSAGetLastError() == WSAENOBUFS ||
|
|
WSAGetLastError() == WSAEWOULDBLOCK)
|
|
#endif
|
|
{
|
|
/* udp send has blocked */
|
|
doq_store_blocked_pkt(c, paddr, ecn);
|
|
return;
|
|
}
|
|
if(!udp_send_errno_needs_log((void*)&paddr->addr,
|
|
paddr->addrlen))
|
|
return;
|
|
if(verbosity >= VERB_OPS) {
|
|
char host[256], port[32];
|
|
if(doq_print_addr_port(&paddr->addr, paddr->addrlen,
|
|
host, sizeof(host), port, sizeof(port))) {
|
|
verbose(VERB_OPS, "doq sendmsg to %s %s "
|
|
"failed: %s", host, port,
|
|
strerror(errno));
|
|
} else {
|
|
verbose(VERB_OPS, "doq sendmsg failed: %s",
|
|
strerror(errno));
|
|
}
|
|
}
|
|
return;
|
|
} else if(ret != (ssize_t)sldns_buffer_limit(c->doq_socket->pkt_buf)) {
|
|
char host[256], port[32];
|
|
if(doq_print_addr_port(&paddr->addr, paddr->addrlen, host,
|
|
sizeof(host), port, sizeof(port))) {
|
|
log_err("doq sendmsg to %s %s failed: "
|
|
"sent %d in place of %d bytes",
|
|
host, port, (int)ret,
|
|
(int)sldns_buffer_limit(c->doq_socket->pkt_buf));
|
|
} else {
|
|
log_err("doq sendmsg failed: "
|
|
"sent %d in place of %d bytes",
|
|
(int)ret, (int)sldns_buffer_limit(c->doq_socket->pkt_buf));
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
/** fetch port number */
|
|
static int
|
|
doq_sockaddr_get_port(struct doq_addr_storage* addr)
|
|
{
|
|
if(addr->sockaddr.in.sin_family == AF_INET) {
|
|
struct sockaddr_in* sa = (struct sockaddr_in*)addr;
|
|
return ntohs(sa->sin_port);
|
|
} else if(addr->sockaddr.in.sin_family == AF_INET6) {
|
|
struct sockaddr_in6* sa6 = (struct sockaddr_in6*)addr;
|
|
return ntohs(sa6->sin6_port);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/** get local address from ancillary data headers */
|
|
static int
|
|
doq_get_localaddr_cmsg(struct comm_point* c, struct doq_pkt_addr* paddr,
|
|
int* pkt_continue, struct msghdr* msg)
|
|
{
|
|
#ifndef S_SPLINT_S
|
|
struct cmsghdr* cmsg;
|
|
#endif /* S_SPLINT_S */
|
|
|
|
memset(&paddr->localaddr, 0, sizeof(paddr->localaddr));
|
|
#ifndef S_SPLINT_S
|
|
for(cmsg = CMSG_FIRSTHDR(msg); cmsg != NULL;
|
|
cmsg = CMSG_NXTHDR(msg, cmsg)) {
|
|
if( cmsg->cmsg_level == IPPROTO_IPV6 &&
|
|
cmsg->cmsg_type == IPV6_PKTINFO) {
|
|
struct in6_pktinfo* v6info =
|
|
(struct in6_pktinfo*)CMSG_DATA(cmsg);
|
|
struct sockaddr_in6* sa= (struct sockaddr_in6*)
|
|
&paddr->localaddr;
|
|
struct sockaddr_in6* rema = (struct sockaddr_in6*)
|
|
&paddr->addr;
|
|
if(rema->sin6_family != AF_INET6) {
|
|
log_err("doq cmsg family mismatch cmsg is ip6");
|
|
*pkt_continue = 1;
|
|
return 0;
|
|
}
|
|
sa->sin6_family = AF_INET6;
|
|
sa->sin6_port = htons(doq_sockaddr_get_port(
|
|
(void*)c->socket->addr));
|
|
paddr->ifindex = v6info->ipi6_ifindex;
|
|
memmove(&sa->sin6_addr, &v6info->ipi6_addr,
|
|
sizeof(struct in6_addr));
|
|
paddr->localaddrlen = sizeof(struct sockaddr_in6);
|
|
break;
|
|
#ifdef IP_PKTINFO
|
|
} else if( cmsg->cmsg_level == IPPROTO_IP &&
|
|
cmsg->cmsg_type == IP_PKTINFO) {
|
|
struct in_pktinfo* v4info =
|
|
(struct in_pktinfo*)CMSG_DATA(cmsg);
|
|
struct sockaddr_in* sa= (struct sockaddr_in*)
|
|
&paddr->localaddr;
|
|
struct sockaddr_in* rema = (struct sockaddr_in*)
|
|
&paddr->addr;
|
|
if(rema->sin_family != AF_INET) {
|
|
log_err("doq cmsg family mismatch cmsg is ip4");
|
|
*pkt_continue = 1;
|
|
return 0;
|
|
}
|
|
sa->sin_family = AF_INET;
|
|
sa->sin_port = htons(doq_sockaddr_get_port(
|
|
(void*)c->socket->addr));
|
|
paddr->ifindex = v4info->ipi_ifindex;
|
|
memmove(&sa->sin_addr, &v4info->ipi_addr,
|
|
sizeof(struct in_addr));
|
|
paddr->localaddrlen = sizeof(struct sockaddr_in);
|
|
break;
|
|
#elif defined(IP_RECVDSTADDR)
|
|
} else if( cmsg->cmsg_level == IPPROTO_IP &&
|
|
cmsg->cmsg_type == IP_RECVDSTADDR) {
|
|
struct sockaddr_in* sa= (struct sockaddr_in*)
|
|
&paddr->localaddr;
|
|
struct sockaddr_in* rema = (struct sockaddr_in*)
|
|
&paddr->addr;
|
|
if(rema->sin_family != AF_INET) {
|
|
log_err("doq cmsg family mismatch cmsg is ip4");
|
|
*pkt_continue = 1;
|
|
return 0;
|
|
}
|
|
sa->sin_family = AF_INET;
|
|
sa->sin_port = htons(doq_sockaddr_get_port(
|
|
(void*)c->socket->addr));
|
|
paddr->ifindex = 0;
|
|
memmove(&sa.sin_addr, CMSG_DATA(cmsg),
|
|
sizeof(struct in_addr));
|
|
paddr->localaddrlen = sizeof(struct sockaddr_in);
|
|
break;
|
|
#endif /* IP_PKTINFO or IP_RECVDSTADDR */
|
|
}
|
|
}
|
|
#endif /* S_SPLINT_S */
|
|
|
|
return 1;
|
|
}
|
|
|
|
/** get packet ecn information */
|
|
static uint32_t
|
|
msghdr_get_ecn(struct msghdr* msg, int family)
|
|
{
|
|
#ifndef S_SPLINT_S
|
|
struct cmsghdr* cmsg;
|
|
if(family == AF_INET6) {
|
|
for(cmsg = CMSG_FIRSTHDR(msg); cmsg != NULL;
|
|
cmsg = CMSG_NXTHDR(msg, cmsg)) {
|
|
if(cmsg->cmsg_level == IPPROTO_IPV6 &&
|
|
cmsg->cmsg_type == IPV6_TCLASS &&
|
|
cmsg->cmsg_len != 0) {
|
|
uint8_t* ecn = (uint8_t*)CMSG_DATA(cmsg);
|
|
return *ecn;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
for(cmsg = CMSG_FIRSTHDR(msg); cmsg != NULL;
|
|
cmsg = CMSG_NXTHDR(msg, cmsg)) {
|
|
if(cmsg->cmsg_level == IPPROTO_IP &&
|
|
cmsg->cmsg_type == IP_TOS &&
|
|
cmsg->cmsg_len != 0) {
|
|
uint8_t* ecn = (uint8_t*)CMSG_DATA(cmsg);
|
|
return *ecn;
|
|
}
|
|
}
|
|
#endif /* S_SPLINT_S */
|
|
return 0;
|
|
}
|
|
|
|
/** receive packet for DoQ on UDP. get ancillary data for addresses,
|
|
* return false if failed and the callback can stop receiving UDP packets
|
|
* if pkt_continue is false. */
|
|
static int
|
|
doq_recv(struct comm_point* c, struct doq_pkt_addr* paddr, int* pkt_continue,
|
|
struct ngtcp2_pkt_info* pi)
|
|
{
|
|
struct msghdr msg;
|
|
struct iovec iov[1];
|
|
ssize_t rcv;
|
|
union {
|
|
struct cmsghdr hdr;
|
|
char buf[256];
|
|
} ancil;
|
|
|
|
msg.msg_name = &paddr->addr;
|
|
msg.msg_namelen = (socklen_t)sizeof(paddr->addr);
|
|
iov[0].iov_base = sldns_buffer_begin(c->doq_socket->pkt_buf);
|
|
iov[0].iov_len = sldns_buffer_remaining(c->doq_socket->pkt_buf);
|
|
msg.msg_iov = iov;
|
|
msg.msg_iovlen = 1;
|
|
msg.msg_control = ancil.buf;
|
|
#ifndef S_SPLINT_S
|
|
msg.msg_controllen = sizeof(ancil.buf);
|
|
#endif /* S_SPLINT_S */
|
|
msg.msg_flags = 0;
|
|
|
|
rcv = recvmsg(c->fd, &msg, MSG_DONTWAIT);
|
|
if(rcv == -1) {
|
|
if(errno != EAGAIN && errno != EINTR
|
|
&& udp_recv_needs_log(errno)) {
|
|
log_err("recvmsg failed for doq: %s", strerror(errno));
|
|
}
|
|
*pkt_continue = 0;
|
|
return 0;
|
|
}
|
|
|
|
paddr->addrlen = msg.msg_namelen;
|
|
sldns_buffer_skip(c->doq_socket->pkt_buf, rcv);
|
|
sldns_buffer_flip(c->doq_socket->pkt_buf);
|
|
if(!doq_get_localaddr_cmsg(c, paddr, pkt_continue, &msg))
|
|
return 0;
|
|
pi->ecn = msghdr_get_ecn(&msg, paddr->addr.sockaddr.in.sin_family);
|
|
return 1;
|
|
}
|
|
|
|
/** send the version negotiation for doq. scid and dcid are flipped around
|
|
* to send back to the client. */
|
|
static void
|
|
doq_send_version_negotiation(struct comm_point* c, struct doq_pkt_addr* paddr,
|
|
const uint8_t* dcid, size_t dcidlen, const uint8_t* scid,
|
|
size_t scidlen)
|
|
{
|
|
uint32_t versions[2];
|
|
size_t versions_len = 0;
|
|
ngtcp2_ssize ret;
|
|
uint8_t unused_random;
|
|
|
|
/* fill the array with supported versions */
|
|
versions[0] = NGTCP2_PROTO_VER_V1;
|
|
versions_len = 1;
|
|
unused_random = ub_random_max(c->doq_socket->rnd, 256);
|
|
sldns_buffer_clear(c->doq_socket->pkt_buf);
|
|
ret = ngtcp2_pkt_write_version_negotiation(
|
|
sldns_buffer_begin(c->doq_socket->pkt_buf),
|
|
sldns_buffer_capacity(c->doq_socket->pkt_buf), unused_random,
|
|
dcid, dcidlen, scid, scidlen, versions, versions_len);
|
|
if(ret < 0) {
|
|
log_err("ngtcp2_pkt_write_version_negotiation failed: %s",
|
|
ngtcp2_strerror(ret));
|
|
return;
|
|
}
|
|
sldns_buffer_set_position(c->doq_socket->pkt_buf, ret);
|
|
sldns_buffer_flip(c->doq_socket->pkt_buf);
|
|
doq_send_pkt(c, paddr, 0);
|
|
}
|
|
|
|
/** Find the doq_conn object by remote address and dcid */
|
|
static struct doq_conn*
|
|
doq_conn_find(struct doq_table* table, struct doq_addr_storage* addr,
|
|
socklen_t addrlen, struct doq_addr_storage* localaddr,
|
|
socklen_t localaddrlen, int ifindex, const uint8_t* dcid,
|
|
size_t dcidlen)
|
|
{
|
|
struct rbnode_type* node;
|
|
struct doq_conn key;
|
|
memset(&key.node, 0, sizeof(key.node));
|
|
key.node.key = &key;
|
|
memmove(&key.key.paddr.addr, addr, addrlen);
|
|
key.key.paddr.addrlen = addrlen;
|
|
memmove(&key.key.paddr.localaddr, localaddr, localaddrlen);
|
|
key.key.paddr.localaddrlen = localaddrlen;
|
|
key.key.paddr.ifindex = ifindex;
|
|
key.key.dcid = (void*)dcid;
|
|
key.key.dcidlen = dcidlen;
|
|
node = rbtree_search(table->conn_tree, &key);
|
|
if(node)
|
|
return (struct doq_conn*)node->key;
|
|
return NULL;
|
|
}
|
|
|
|
/** find the doq_con by the connection id */
|
|
static struct doq_conn*
|
|
doq_conn_find_by_id(struct doq_table* table, const uint8_t* dcid,
|
|
size_t dcidlen)
|
|
{
|
|
struct doq_conid* conid;
|
|
lock_rw_rdlock(&table->conid_lock);
|
|
conid = doq_conid_find(table, dcid, dcidlen);
|
|
if(conid) {
|
|
/* make a copy of the key */
|
|
struct doq_conn* conn;
|
|
struct doq_conn_key key = conid->key;
|
|
uint8_t cid[NGTCP2_MAX_CIDLEN];
|
|
log_assert(conid->key.dcidlen <= NGTCP2_MAX_CIDLEN);
|
|
memcpy(cid, conid->key.dcid, conid->key.dcidlen);
|
|
key.dcid = cid;
|
|
lock_rw_unlock(&table->conid_lock);
|
|
|
|
/* now that the conid lock is released, look up the conn */
|
|
lock_rw_rdlock(&table->lock);
|
|
conn = doq_conn_find(table, &key.paddr.addr,
|
|
key.paddr.addrlen, &key.paddr.localaddr,
|
|
key.paddr.localaddrlen, key.paddr.ifindex, key.dcid,
|
|
key.dcidlen);
|
|
if(!conn) {
|
|
/* The connection got deleted between the conid lookup
|
|
* and the connection lock grab, it no longer exists,
|
|
* so return null. */
|
|
lock_rw_unlock(&table->lock);
|
|
return NULL;
|
|
}
|
|
lock_basic_lock(&conn->lock);
|
|
if(conn->is_deleted) {
|
|
lock_rw_unlock(&table->lock);
|
|
lock_basic_unlock(&conn->lock);
|
|
return NULL;
|
|
}
|
|
lock_rw_unlock(&table->lock);
|
|
return conn;
|
|
}
|
|
lock_rw_unlock(&table->conid_lock);
|
|
return NULL;
|
|
}
|
|
|
|
/** Find the doq_conn, by addr or by connection id */
|
|
static struct doq_conn*
|
|
doq_conn_find_by_addr_or_cid(struct doq_table* table,
|
|
struct doq_pkt_addr* paddr, const uint8_t* dcid, size_t dcidlen)
|
|
{
|
|
struct doq_conn* conn;
|
|
lock_rw_rdlock(&table->lock);
|
|
conn = doq_conn_find(table, &paddr->addr, paddr->addrlen,
|
|
&paddr->localaddr, paddr->localaddrlen, paddr->ifindex,
|
|
dcid, dcidlen);
|
|
if(conn && conn->is_deleted) {
|
|
conn = NULL;
|
|
}
|
|
if(conn) {
|
|
lock_basic_lock(&conn->lock);
|
|
lock_rw_unlock(&table->lock);
|
|
verbose(VERB_ALGO, "doq: found connection by address, dcid");
|
|
} else {
|
|
lock_rw_unlock(&table->lock);
|
|
conn = doq_conn_find_by_id(table, dcid, dcidlen);
|
|
if(conn) {
|
|
verbose(VERB_ALGO, "doq: found connection by dcid");
|
|
}
|
|
}
|
|
return conn;
|
|
}
|
|
|
|
/** decode doq packet header, false on handled or failure, true to continue
|
|
* to process the packet */
|
|
static int
|
|
doq_decode_pkt_header_negotiate(struct comm_point* c,
|
|
struct doq_pkt_addr* paddr, struct doq_conn** conn)
|
|
{
|
|
#ifdef HAVE_STRUCT_NGTCP2_VERSION_CID
|
|
struct ngtcp2_version_cid vc;
|
|
#else
|
|
uint32_t version;
|
|
const uint8_t *dcid, *scid;
|
|
size_t dcidlen, scidlen;
|
|
#endif
|
|
int rv;
|
|
|
|
#ifdef HAVE_STRUCT_NGTCP2_VERSION_CID
|
|
rv = ngtcp2_pkt_decode_version_cid(&vc,
|
|
sldns_buffer_begin(c->doq_socket->pkt_buf),
|
|
sldns_buffer_limit(c->doq_socket->pkt_buf),
|
|
c->doq_socket->sv_scidlen);
|
|
#else
|
|
rv = ngtcp2_pkt_decode_version_cid(&version, &dcid, &dcidlen,
|
|
&scid, &scidlen, sldns_buffer_begin(c->doq_socket->pkt_buf),
|
|
sldns_buffer_limit(c->doq_socket->pkt_buf), c->doq_socket->sv_scidlen);
|
|
#endif
|
|
if(rv != 0) {
|
|
if(rv == NGTCP2_ERR_VERSION_NEGOTIATION) {
|
|
/* send the version negotiation */
|
|
doq_send_version_negotiation(c, paddr,
|
|
#ifdef HAVE_STRUCT_NGTCP2_VERSION_CID
|
|
vc.scid, vc.scidlen, vc.dcid, vc.dcidlen
|
|
#else
|
|
scid, scidlen, dcid, dcidlen
|
|
#endif
|
|
);
|
|
return 0;
|
|
}
|
|
verbose(VERB_ALGO, "doq: could not decode version "
|
|
"and CID from QUIC packet header: %s",
|
|
ngtcp2_strerror(rv));
|
|
return 0;
|
|
}
|
|
|
|
if(verbosity >= VERB_ALGO) {
|
|
verbose(VERB_ALGO, "ngtcp2_pkt_decode_version_cid packet has "
|
|
"QUIC protocol version %u", (unsigned)
|
|
#ifdef HAVE_STRUCT_NGTCP2_VERSION_CID
|
|
vc.
|
|
#endif
|
|
version
|
|
);
|
|
log_hex("dcid",
|
|
#ifdef HAVE_STRUCT_NGTCP2_VERSION_CID
|
|
(void*)vc.dcid, vc.dcidlen
|
|
#else
|
|
(void*)dcid, dcidlen
|
|
#endif
|
|
);
|
|
log_hex("scid",
|
|
#ifdef HAVE_STRUCT_NGTCP2_VERSION_CID
|
|
(void*)vc.scid, vc.scidlen
|
|
#else
|
|
(void*)scid, scidlen
|
|
#endif
|
|
);
|
|
}
|
|
*conn = doq_conn_find_by_addr_or_cid(c->doq_socket->table, paddr,
|
|
#ifdef HAVE_STRUCT_NGTCP2_VERSION_CID
|
|
vc.dcid, vc.dcidlen
|
|
#else
|
|
dcid, dcidlen
|
|
#endif
|
|
);
|
|
if(*conn)
|
|
(*conn)->doq_socket = c->doq_socket;
|
|
return 1;
|
|
}
|
|
|
|
/** fill cid structure with random data */
|
|
static void doq_cid_randfill(struct ngtcp2_cid* cid, size_t datalen,
|
|
struct ub_randstate* rnd)
|
|
{
|
|
uint8_t buf[32];
|
|
if(datalen > sizeof(buf))
|
|
datalen = sizeof(buf);
|
|
doq_fill_rand(rnd, buf, datalen);
|
|
ngtcp2_cid_init(cid, buf, datalen);
|
|
}
|
|
|
|
/** send retry packet for doq connection. */
|
|
static void
|
|
doq_send_retry(struct comm_point* c, struct doq_pkt_addr* paddr,
|
|
struct ngtcp2_pkt_hd* hd)
|
|
{
|
|
char host[256], port[32];
|
|
struct ngtcp2_cid scid;
|
|
uint8_t token[NGTCP2_CRYPTO_MAX_RETRY_TOKENLEN];
|
|
ngtcp2_tstamp ts;
|
|
ngtcp2_ssize tokenlen, ret;
|
|
|
|
if(!doq_print_addr_port(&paddr->addr, paddr->addrlen, host,
|
|
sizeof(host), port, sizeof(port))) {
|
|
log_err("doq_send_retry failed");
|
|
return;
|
|
}
|
|
verbose(VERB_ALGO, "doq: sending retry packet to %s %s", host, port);
|
|
|
|
/* the server chosen source connection ID */
|
|
scid.datalen = c->doq_socket->sv_scidlen;
|
|
doq_cid_randfill(&scid, scid.datalen, c->doq_socket->rnd);
|
|
|
|
ts = doq_get_timestamp_nanosec();
|
|
|
|
tokenlen = ngtcp2_crypto_generate_retry_token(token,
|
|
c->doq_socket->static_secret, c->doq_socket->static_secret_len,
|
|
hd->version, (void*)&paddr->addr, paddr->addrlen, &scid,
|
|
&hd->dcid, ts);
|
|
if(tokenlen < 0) {
|
|
log_err("ngtcp2_crypto_generate_retry_token failed: %s",
|
|
ngtcp2_strerror(tokenlen));
|
|
return;
|
|
}
|
|
|
|
sldns_buffer_clear(c->doq_socket->pkt_buf);
|
|
ret = ngtcp2_crypto_write_retry(sldns_buffer_begin(c->doq_socket->pkt_buf),
|
|
sldns_buffer_capacity(c->doq_socket->pkt_buf), hd->version,
|
|
&hd->scid, &scid, &hd->dcid, token, tokenlen);
|
|
if(ret < 0) {
|
|
log_err("ngtcp2_crypto_write_retry failed: %s",
|
|
ngtcp2_strerror(ret));
|
|
return;
|
|
}
|
|
sldns_buffer_set_position(c->doq_socket->pkt_buf, ret);
|
|
sldns_buffer_flip(c->doq_socket->pkt_buf);
|
|
doq_send_pkt(c, paddr, 0);
|
|
}
|
|
|
|
/** doq send stateless connection close */
|
|
static void
|
|
doq_send_stateless_connection_close(struct comm_point* c,
|
|
struct doq_pkt_addr* paddr, struct ngtcp2_pkt_hd* hd,
|
|
uint64_t error_code)
|
|
{
|
|
ngtcp2_ssize ret;
|
|
sldns_buffer_clear(c->doq_socket->pkt_buf);
|
|
ret = ngtcp2_crypto_write_connection_close(
|
|
sldns_buffer_begin(c->doq_socket->pkt_buf),
|
|
sldns_buffer_capacity(c->doq_socket->pkt_buf), hd->version, &hd->scid,
|
|
&hd->dcid, error_code, NULL, 0);
|
|
if(ret < 0) {
|
|
log_err("ngtcp2_crypto_write_connection_close failed: %s",
|
|
ngtcp2_strerror(ret));
|
|
return;
|
|
}
|
|
sldns_buffer_set_position(c->doq_socket->pkt_buf, ret);
|
|
sldns_buffer_flip(c->doq_socket->pkt_buf);
|
|
doq_send_pkt(c, paddr, 0);
|
|
}
|
|
|
|
/** doq verify retry token, false on failure */
|
|
static int
|
|
doq_verify_retry_token(struct comm_point* c, struct doq_pkt_addr* paddr,
|
|
struct ngtcp2_cid* ocid, struct ngtcp2_pkt_hd* hd)
|
|
{
|
|
char host[256], port[32];
|
|
ngtcp2_tstamp ts;
|
|
if(!doq_print_addr_port(&paddr->addr, paddr->addrlen, host,
|
|
sizeof(host), port, sizeof(port))) {
|
|
log_err("doq_verify_retry_token failed");
|
|
return 0;
|
|
}
|
|
ts = doq_get_timestamp_nanosec();
|
|
verbose(VERB_ALGO, "doq: verifying retry token from %s %s", host,
|
|
port);
|
|
if(ngtcp2_crypto_verify_retry_token(ocid,
|
|
#ifdef HAVE_STRUCT_NGTCP2_PKT_HD_TOKENLEN
|
|
hd->token, hd->tokenlen,
|
|
#else
|
|
hd->token.base, hd->token.len,
|
|
#endif
|
|
c->doq_socket->static_secret,
|
|
c->doq_socket->static_secret_len, hd->version,
|
|
(void*)&paddr->addr, paddr->addrlen, &hd->dcid,
|
|
10*NGTCP2_SECONDS, ts) != 0) {
|
|
verbose(VERB_ALGO, "doq: could not verify retry token "
|
|
"from %s %s", host, port);
|
|
return 0;
|
|
}
|
|
verbose(VERB_ALGO, "doq: verified retry token from %s %s", host, port);
|
|
return 1;
|
|
}
|
|
|
|
/** doq verify token, false on failure */
|
|
static int
|
|
doq_verify_token(struct comm_point* c, struct doq_pkt_addr* paddr,
|
|
struct ngtcp2_pkt_hd* hd)
|
|
{
|
|
char host[256], port[32];
|
|
ngtcp2_tstamp ts;
|
|
if(!doq_print_addr_port(&paddr->addr, paddr->addrlen, host,
|
|
sizeof(host), port, sizeof(port))) {
|
|
log_err("doq_verify_token failed");
|
|
return 0;
|
|
}
|
|
ts = doq_get_timestamp_nanosec();
|
|
verbose(VERB_ALGO, "doq: verifying token from %s %s", host, port);
|
|
if(ngtcp2_crypto_verify_regular_token(
|
|
#ifdef HAVE_STRUCT_NGTCP2_PKT_HD_TOKENLEN
|
|
hd->token, hd->tokenlen,
|
|
#else
|
|
hd->token.base, hd->token.len,
|
|
#endif
|
|
c->doq_socket->static_secret, c->doq_socket->static_secret_len,
|
|
(void*)&paddr->addr, paddr->addrlen, 3600*NGTCP2_SECONDS,
|
|
ts) != 0) {
|
|
verbose(VERB_ALGO, "doq: could not verify token from %s %s",
|
|
host, port);
|
|
return 0;
|
|
}
|
|
verbose(VERB_ALGO, "doq: verified token from %s %s", host, port);
|
|
return 1;
|
|
}
|
|
|
|
/** delete and remove from the lookup tree the doq_conn connection */
|
|
static void
|
|
doq_delete_connection(struct comm_point* c, struct doq_conn* conn)
|
|
{
|
|
struct doq_conn copy;
|
|
uint8_t cid[NGTCP2_MAX_CIDLEN];
|
|
rbnode_type* node;
|
|
if(!conn)
|
|
return;
|
|
/* Copy the key and set it deleted. */
|
|
conn->is_deleted = 1;
|
|
doq_conn_write_disable(conn);
|
|
copy.key = conn->key;
|
|
log_assert(conn->key.dcidlen <= NGTCP2_MAX_CIDLEN);
|
|
memcpy(cid, conn->key.dcid, conn->key.dcidlen);
|
|
copy.key.dcid = cid;
|
|
copy.node.key = ©
|
|
lock_basic_unlock(&conn->lock);
|
|
|
|
/* Now get the table lock to delete it from the tree */
|
|
lock_rw_wrlock(&c->doq_socket->table->lock);
|
|
node = rbtree_delete(c->doq_socket->table->conn_tree, copy.node.key);
|
|
if(node) {
|
|
conn = (struct doq_conn*)node->key;
|
|
lock_basic_lock(&conn->lock);
|
|
doq_conn_write_list_remove(c->doq_socket->table, conn);
|
|
if(conn->timer.timer_in_list) {
|
|
/* Remove timer from list first, because finding the
|
|
* rbnode element of the setlist of same timeouts
|
|
* needs tree lookup. Edit the tree structure after
|
|
* that lookup. */
|
|
doq_timer_list_remove(c->doq_socket->table,
|
|
&conn->timer);
|
|
}
|
|
if(conn->timer.timer_in_tree)
|
|
doq_timer_tree_remove(c->doq_socket->table,
|
|
&conn->timer);
|
|
}
|
|
lock_rw_unlock(&c->doq_socket->table->lock);
|
|
if(node) {
|
|
lock_basic_unlock(&conn->lock);
|
|
doq_table_quic_size_subtract(c->doq_socket->table,
|
|
sizeof(*conn)+conn->key.dcidlen);
|
|
doq_conn_delete(conn, c->doq_socket->table);
|
|
}
|
|
}
|
|
|
|
/** create and setup a new doq connection, to a new destination, or with
|
|
* a new dcid. It has a new set of streams. It is inserted in the lookup tree.
|
|
* Returns NULL on failure. */
|
|
static struct doq_conn*
|
|
doq_setup_new_conn(struct comm_point* c, struct doq_pkt_addr* paddr,
|
|
struct ngtcp2_pkt_hd* hd, struct ngtcp2_cid* ocid)
|
|
{
|
|
struct doq_conn* conn;
|
|
if(!doq_table_quic_size_available(c->doq_socket->table,
|
|
c->doq_socket->cfg, sizeof(*conn)+hd->dcid.datalen
|
|
+ sizeof(struct doq_stream)
|
|
+ 100 /* estimated input query */
|
|
+ 1200 /* estimated output query */)) {
|
|
verbose(VERB_ALGO, "doq: no mem available for new connection");
|
|
doq_send_stateless_connection_close(c, paddr, hd,
|
|
NGTCP2_CONNECTION_REFUSED);
|
|
return NULL;
|
|
}
|
|
conn = doq_conn_create(c, paddr, hd->dcid.data, hd->dcid.datalen,
|
|
hd->version);
|
|
if(!conn) {
|
|
log_err("doq: could not allocate doq_conn");
|
|
return NULL;
|
|
}
|
|
lock_rw_wrlock(&c->doq_socket->table->lock);
|
|
lock_basic_lock(&conn->lock);
|
|
if(!rbtree_insert(c->doq_socket->table->conn_tree, &conn->node)) {
|
|
lock_rw_unlock(&c->doq_socket->table->lock);
|
|
log_err("doq: duplicate connection");
|
|
/* conn has no entry in writelist, and no timer yet. */
|
|
lock_basic_unlock(&conn->lock);
|
|
doq_conn_delete(conn, c->doq_socket->table);
|
|
return NULL;
|
|
}
|
|
lock_rw_unlock(&c->doq_socket->table->lock);
|
|
doq_table_quic_size_add(c->doq_socket->table,
|
|
sizeof(*conn)+conn->key.dcidlen);
|
|
verbose(VERB_ALGO, "doq: created new connection");
|
|
|
|
/* the scid and dcid switch meaning from the accepted client
|
|
* connection to the server connection. The 'source' and 'destination'
|
|
* meaning is reversed. */
|
|
if(!doq_conn_setup(conn, hd->scid.data, hd->scid.datalen,
|
|
(ocid?ocid->data:NULL), (ocid?ocid->datalen:0),
|
|
#ifdef HAVE_STRUCT_NGTCP2_PKT_HD_TOKENLEN
|
|
hd->token, hd->tokenlen
|
|
#else
|
|
hd->token.base, hd->token.len
|
|
#endif
|
|
)) {
|
|
log_err("doq: could not set up connection");
|
|
doq_delete_connection(c, conn);
|
|
return NULL;
|
|
}
|
|
return conn;
|
|
}
|
|
|
|
/** perform doq address validation */
|
|
static int
|
|
doq_address_validation(struct comm_point* c, struct doq_pkt_addr* paddr,
|
|
struct ngtcp2_pkt_hd* hd, struct ngtcp2_cid* ocid,
|
|
struct ngtcp2_cid** pocid)
|
|
{
|
|
#ifdef HAVE_STRUCT_NGTCP2_PKT_HD_TOKENLEN
|
|
const uint8_t* token = hd->token;
|
|
size_t tokenlen = hd->tokenlen;
|
|
#else
|
|
const uint8_t* token = hd->token.base;
|
|
size_t tokenlen = hd->token.len;
|
|
#endif
|
|
verbose(VERB_ALGO, "doq stateless address validation");
|
|
|
|
if(tokenlen == 0 || token == NULL) {
|
|
doq_send_retry(c, paddr, hd);
|
|
return 0;
|
|
}
|
|
if(token[0] != NGTCP2_CRYPTO_TOKEN_MAGIC_RETRY &&
|
|
hd->dcid.datalen < NGTCP2_MIN_INITIAL_DCIDLEN) {
|
|
doq_send_stateless_connection_close(c, paddr, hd,
|
|
NGTCP2_INVALID_TOKEN);
|
|
return 0;
|
|
}
|
|
if(token[0] == NGTCP2_CRYPTO_TOKEN_MAGIC_RETRY) {
|
|
if(!doq_verify_retry_token(c, paddr, ocid, hd)) {
|
|
doq_send_stateless_connection_close(c, paddr, hd,
|
|
NGTCP2_INVALID_TOKEN);
|
|
return 0;
|
|
}
|
|
*pocid = ocid;
|
|
} else if(token[0] == NGTCP2_CRYPTO_TOKEN_MAGIC_REGULAR) {
|
|
if(!doq_verify_token(c, paddr, hd)) {
|
|
doq_send_retry(c, paddr, hd);
|
|
return 0;
|
|
}
|
|
#ifdef HAVE_STRUCT_NGTCP2_PKT_HD_TOKENLEN
|
|
hd->token = NULL;
|
|
hd->tokenlen = 0;
|
|
#else
|
|
hd->token.base = NULL;
|
|
hd->token.len = 0;
|
|
#endif
|
|
} else {
|
|
verbose(VERB_ALGO, "doq address validation: unrecognised "
|
|
"token in hd.token.base with magic byte 0x%2.2x",
|
|
(int)token[0]);
|
|
if(c->doq_socket->validate_addr) {
|
|
doq_send_retry(c, paddr, hd);
|
|
return 0;
|
|
}
|
|
#ifdef HAVE_STRUCT_NGTCP2_PKT_HD_TOKENLEN
|
|
hd->token = NULL;
|
|
hd->tokenlen = 0;
|
|
#else
|
|
hd->token.base = NULL;
|
|
hd->token.len = 0;
|
|
#endif
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/** the doq accept, returns false if no further processing of content */
|
|
static int
|
|
doq_accept(struct comm_point* c, struct doq_pkt_addr* paddr,
|
|
struct doq_conn** conn, struct ngtcp2_pkt_info* pi)
|
|
{
|
|
int rv;
|
|
struct ngtcp2_pkt_hd hd;
|
|
struct ngtcp2_cid ocid, *pocid=NULL;
|
|
int err_retry;
|
|
memset(&hd, 0, sizeof(hd));
|
|
rv = ngtcp2_accept(&hd, sldns_buffer_begin(c->doq_socket->pkt_buf),
|
|
sldns_buffer_limit(c->doq_socket->pkt_buf));
|
|
if(rv != 0) {
|
|
if(rv == NGTCP2_ERR_RETRY) {
|
|
doq_send_retry(c, paddr, &hd);
|
|
return 0;
|
|
}
|
|
log_err("doq: initial packet failed, ngtcp2_accept failed: %s",
|
|
ngtcp2_strerror(rv));
|
|
return 0;
|
|
}
|
|
if(c->doq_socket->validate_addr ||
|
|
#ifdef HAVE_STRUCT_NGTCP2_PKT_HD_TOKENLEN
|
|
hd.tokenlen
|
|
#else
|
|
hd.token.len
|
|
#endif
|
|
) {
|
|
if(!doq_address_validation(c, paddr, &hd, &ocid, &pocid))
|
|
return 0;
|
|
}
|
|
*conn = doq_setup_new_conn(c, paddr, &hd, pocid);
|
|
if(!*conn)
|
|
return 0;
|
|
(*conn)->doq_socket = c->doq_socket;
|
|
if(!doq_conn_recv(c, paddr, *conn, pi, &err_retry, NULL)) {
|
|
if(err_retry)
|
|
doq_send_retry(c, paddr, &hd);
|
|
doq_delete_connection(c, *conn);
|
|
*conn = NULL;
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/** doq pickup a timer to wait for for the worker. If any timer exists. */
|
|
static void
|
|
doq_pickup_timer(struct comm_point* c)
|
|
{
|
|
struct doq_timer* t;
|
|
struct timeval tv;
|
|
int have_time = 0;
|
|
memset(&tv, 0, sizeof(tv));
|
|
|
|
lock_rw_wrlock(&c->doq_socket->table->lock);
|
|
RBTREE_FOR(t, struct doq_timer*, c->doq_socket->table->timer_tree) {
|
|
if(t->worker_doq_socket == NULL ||
|
|
t->worker_doq_socket == c->doq_socket) {
|
|
/* pick up this element */
|
|
t->worker_doq_socket = c->doq_socket;
|
|
have_time = 1;
|
|
memcpy(&tv, &t->time, sizeof(tv));
|
|
break;
|
|
}
|
|
}
|
|
lock_rw_unlock(&c->doq_socket->table->lock);
|
|
|
|
if(have_time) {
|
|
struct timeval rel;
|
|
timeval_subtract(&rel, &tv, c->doq_socket->now_tv);
|
|
comm_timer_set(c->doq_socket->timer, &rel);
|
|
memcpy(&c->doq_socket->marked_time, &tv,
|
|
sizeof(c->doq_socket->marked_time));
|
|
verbose(VERB_ALGO, "doq pickup timer at %d.%6.6d in %d.%6.6d",
|
|
(int)tv.tv_sec, (int)tv.tv_usec, (int)rel.tv_sec,
|
|
(int)rel.tv_usec);
|
|
} else {
|
|
if(comm_timer_is_set(c->doq_socket->timer))
|
|
comm_timer_disable(c->doq_socket->timer);
|
|
memset(&c->doq_socket->marked_time, 0,
|
|
sizeof(c->doq_socket->marked_time));
|
|
verbose(VERB_ALGO, "doq timer disabled");
|
|
}
|
|
}
|
|
|
|
/** doq done with connection, release locks and setup timer and write */
|
|
static void
|
|
doq_done_setup_timer_and_write(struct comm_point* c, struct doq_conn* conn)
|
|
{
|
|
struct doq_conn copy;
|
|
uint8_t cid[NGTCP2_MAX_CIDLEN];
|
|
rbnode_type* node;
|
|
struct timeval new_tv;
|
|
int write_change = 0, timer_change = 0;
|
|
|
|
/* No longer in callbacks, so the pointer to doq_socket is back
|
|
* to NULL. */
|
|
conn->doq_socket = NULL;
|
|
|
|
if(doq_conn_check_timer(conn, &new_tv))
|
|
timer_change = 1;
|
|
if( (conn->write_interest && !conn->on_write_list) ||
|
|
(!conn->write_interest && conn->on_write_list))
|
|
write_change = 1;
|
|
|
|
if(!timer_change && !write_change) {
|
|
/* Nothing to do. */
|
|
lock_basic_unlock(&conn->lock);
|
|
return;
|
|
}
|
|
|
|
/* The table lock is needed to change the write list and timer tree.
|
|
* So the connection lock is release and then the connection is
|
|
* looked up again. */
|
|
copy.key = conn->key;
|
|
log_assert(conn->key.dcidlen <= NGTCP2_MAX_CIDLEN);
|
|
memcpy(cid, conn->key.dcid, conn->key.dcidlen);
|
|
copy.key.dcid = cid;
|
|
copy.node.key = ©
|
|
lock_basic_unlock(&conn->lock);
|
|
|
|
lock_rw_wrlock(&c->doq_socket->table->lock);
|
|
node = rbtree_search(c->doq_socket->table->conn_tree, copy.node.key);
|
|
if(!node) {
|
|
lock_rw_unlock(&c->doq_socket->table->lock);
|
|
/* Must have been deleted in the mean time. */
|
|
return;
|
|
}
|
|
conn = (struct doq_conn*)node->key;
|
|
lock_basic_lock(&conn->lock);
|
|
if(conn->is_deleted) {
|
|
/* It is deleted now. */
|
|
lock_rw_unlock(&c->doq_socket->table->lock);
|
|
lock_basic_unlock(&conn->lock);
|
|
return;
|
|
}
|
|
|
|
if(write_change) {
|
|
/* Edit the write lists, we are holding the table.lock and can
|
|
* edit the list first,last and also prev,next and on_list
|
|
* elements in the doq_conn structures. */
|
|
doq_conn_set_write_list(c->doq_socket->table, conn);
|
|
}
|
|
if(timer_change) {
|
|
doq_timer_set(c->doq_socket->table, &conn->timer,
|
|
c->doq_socket, &new_tv);
|
|
}
|
|
lock_rw_unlock(&c->doq_socket->table->lock);
|
|
lock_basic_unlock(&conn->lock);
|
|
}
|
|
|
|
/** doq done with connection callbacks, release locks and setup write */
|
|
static void
|
|
doq_done_with_conn_cb(struct comm_point* c, struct doq_conn* conn)
|
|
{
|
|
struct doq_conn copy;
|
|
uint8_t cid[NGTCP2_MAX_CIDLEN];
|
|
rbnode_type* node;
|
|
|
|
/* no longer in callbacks, so the pointer to doq_socket is back
|
|
* to NULL. */
|
|
conn->doq_socket = NULL;
|
|
|
|
if( (conn->write_interest && conn->on_write_list) ||
|
|
(!conn->write_interest && !conn->on_write_list)) {
|
|
/* The connection already has the required write list
|
|
* status. */
|
|
lock_basic_unlock(&conn->lock);
|
|
return;
|
|
}
|
|
|
|
/* To edit the write list of connections we have to hold the table
|
|
* lock, so we release the connection and then look it up again. */
|
|
copy.key = conn->key;
|
|
log_assert(conn->key.dcidlen <= NGTCP2_MAX_CIDLEN);
|
|
memcpy(cid, conn->key.dcid, conn->key.dcidlen);
|
|
copy.key.dcid = cid;
|
|
copy.node.key = ©
|
|
lock_basic_unlock(&conn->lock);
|
|
|
|
lock_rw_wrlock(&c->doq_socket->table->lock);
|
|
node = rbtree_search(c->doq_socket->table->conn_tree, copy.node.key);
|
|
if(!node) {
|
|
lock_rw_unlock(&c->doq_socket->table->lock);
|
|
/* must have been deleted in the mean time */
|
|
return;
|
|
}
|
|
conn = (struct doq_conn*)node->key;
|
|
lock_basic_lock(&conn->lock);
|
|
if(conn->is_deleted) {
|
|
/* it is deleted now. */
|
|
lock_rw_unlock(&c->doq_socket->table->lock);
|
|
lock_basic_unlock(&conn->lock);
|
|
return;
|
|
}
|
|
|
|
/* edit the write lists, we are holding the table.lock and can
|
|
* edit the list first,last and also prev,next and on_list elements
|
|
* in the doq_conn structures. */
|
|
doq_conn_set_write_list(c->doq_socket->table, conn);
|
|
lock_rw_unlock(&c->doq_socket->table->lock);
|
|
lock_basic_unlock(&conn->lock);
|
|
}
|
|
|
|
/** doq count the length of the write list */
|
|
static size_t
|
|
doq_write_list_length(struct comm_point* c)
|
|
{
|
|
size_t count = 0;
|
|
struct doq_conn* conn;
|
|
lock_rw_rdlock(&c->doq_socket->table->lock);
|
|
conn = c->doq_socket->table->write_list_first;
|
|
while(conn) {
|
|
count++;
|
|
conn = conn->write_next;
|
|
}
|
|
lock_rw_unlock(&c->doq_socket->table->lock);
|
|
return count;
|
|
}
|
|
|
|
/** doq pop the first element from the write list to have write events */
|
|
static struct doq_conn*
|
|
doq_pop_write_conn(struct comm_point* c)
|
|
{
|
|
struct doq_conn* conn;
|
|
lock_rw_wrlock(&c->doq_socket->table->lock);
|
|
conn = doq_table_pop_first(c->doq_socket->table);
|
|
while(conn && conn->is_deleted) {
|
|
lock_basic_unlock(&conn->lock);
|
|
conn = doq_table_pop_first(c->doq_socket->table);
|
|
}
|
|
lock_rw_unlock(&c->doq_socket->table->lock);
|
|
if(conn)
|
|
conn->doq_socket = c->doq_socket;
|
|
return conn;
|
|
}
|
|
|
|
/** doq the connection is done with write callbacks, release it. */
|
|
static void
|
|
doq_done_with_write_cb(struct comm_point* c, struct doq_conn* conn,
|
|
int delete_it)
|
|
{
|
|
if(delete_it) {
|
|
doq_delete_connection(c, conn);
|
|
return;
|
|
}
|
|
doq_done_setup_timer_and_write(c, conn);
|
|
}
|
|
|
|
/** see if the doq socket wants to write packets */
|
|
static int
|
|
doq_socket_want_write(struct comm_point* c)
|
|
{
|
|
int want_write = 0;
|
|
if(c->doq_socket->have_blocked_pkt)
|
|
return 1;
|
|
lock_rw_rdlock(&c->doq_socket->table->lock);
|
|
if(c->doq_socket->table->write_list_first)
|
|
want_write = 1;
|
|
lock_rw_unlock(&c->doq_socket->table->lock);
|
|
return want_write;
|
|
}
|
|
|
|
/** enable write event for the doq server socket fd */
|
|
static void
|
|
doq_socket_write_enable(struct comm_point* c)
|
|
{
|
|
verbose(VERB_ALGO, "doq socket want write");
|
|
if(c->doq_socket->event_has_write)
|
|
return;
|
|
comm_point_listen_for_rw(c, 1, 1);
|
|
c->doq_socket->event_has_write = 1;
|
|
}
|
|
|
|
/** disable write event for the doq server socket fd */
|
|
static void
|
|
doq_socket_write_disable(struct comm_point* c)
|
|
{
|
|
verbose(VERB_ALGO, "doq socket want no write");
|
|
if(!c->doq_socket->event_has_write)
|
|
return;
|
|
comm_point_listen_for_rw(c, 1, 0);
|
|
c->doq_socket->event_has_write = 0;
|
|
}
|
|
|
|
/** write blocked packet, if possible. returns false if failed, again. */
|
|
static int
|
|
doq_write_blocked_pkt(struct comm_point* c)
|
|
{
|
|
struct doq_pkt_addr paddr;
|
|
if(!c->doq_socket->have_blocked_pkt)
|
|
return 1;
|
|
c->doq_socket->have_blocked_pkt = 0;
|
|
if(sldns_buffer_limit(c->doq_socket->blocked_pkt) >
|
|
sldns_buffer_remaining(c->doq_socket->pkt_buf))
|
|
return 1; /* impossibly large, drop it.
|
|
impossible since pkt_buf is same size as blocked_pkt buf. */
|
|
sldns_buffer_clear(c->doq_socket->pkt_buf);
|
|
sldns_buffer_write(c->doq_socket->pkt_buf,
|
|
sldns_buffer_begin(c->doq_socket->blocked_pkt),
|
|
sldns_buffer_limit(c->doq_socket->blocked_pkt));
|
|
sldns_buffer_flip(c->doq_socket->pkt_buf);
|
|
memcpy(&paddr, c->doq_socket->blocked_paddr, sizeof(paddr));
|
|
doq_send_pkt(c, &paddr, c->doq_socket->blocked_pkt_pi.ecn);
|
|
if(c->doq_socket->have_blocked_pkt)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
/** doq find a timer that timeouted and return the conn, locked. */
|
|
static struct doq_conn*
|
|
doq_timer_timeout_conn(struct doq_server_socket* doq_socket)
|
|
{
|
|
struct doq_conn* conn = NULL;
|
|
struct rbnode_type* node;
|
|
lock_rw_wrlock(&doq_socket->table->lock);
|
|
node = rbtree_first(doq_socket->table->timer_tree);
|
|
if(node && node != RBTREE_NULL) {
|
|
struct doq_timer* t = (struct doq_timer*)node;
|
|
conn = t->conn;
|
|
|
|
/* If now < timer then no further timeouts in tree. */
|
|
if(timeval_smaller(doq_socket->now_tv, &t->time)) {
|
|
lock_rw_unlock(&doq_socket->table->lock);
|
|
return NULL;
|
|
}
|
|
|
|
lock_basic_lock(&conn->lock);
|
|
conn->doq_socket = doq_socket;
|
|
|
|
/* Now that the timer is fired, remove it. */
|
|
doq_timer_unset(doq_socket->table, t);
|
|
lock_rw_unlock(&doq_socket->table->lock);
|
|
return conn;
|
|
}
|
|
lock_rw_unlock(&doq_socket->table->lock);
|
|
return NULL;
|
|
}
|
|
|
|
/** doq timer erase the marker that said which timer the worker uses. */
|
|
static void
|
|
doq_timer_erase_marker(struct doq_server_socket* doq_socket)
|
|
{
|
|
struct doq_timer* t;
|
|
lock_rw_wrlock(&doq_socket->table->lock);
|
|
t = doq_timer_find_time(doq_socket->table, &doq_socket->marked_time);
|
|
if(t && t->worker_doq_socket == doq_socket)
|
|
t->worker_doq_socket = NULL;
|
|
lock_rw_unlock(&doq_socket->table->lock);
|
|
memset(&doq_socket->marked_time, 0, sizeof(doq_socket->marked_time));
|
|
}
|
|
|
|
void
|
|
doq_timer_cb(void* arg)
|
|
{
|
|
struct doq_server_socket* doq_socket = (struct doq_server_socket*)arg;
|
|
struct doq_conn* conn;
|
|
verbose(VERB_ALGO, "doq timer callback");
|
|
|
|
doq_timer_erase_marker(doq_socket);
|
|
|
|
while((conn = doq_timer_timeout_conn(doq_socket)) != NULL) {
|
|
if(conn->is_deleted ||
|
|
#ifdef HAVE_NGTCP2_CONN_IN_CLOSING_PERIOD
|
|
ngtcp2_conn_in_closing_period(conn->conn) ||
|
|
#else
|
|
ngtcp2_conn_is_in_closing_period(conn->conn) ||
|
|
#endif
|
|
#ifdef HAVE_NGTCP2_CONN_IN_DRAINING_PERIOD
|
|
ngtcp2_conn_in_draining_period(conn->conn)
|
|
#else
|
|
ngtcp2_conn_is_in_draining_period(conn->conn)
|
|
#endif
|
|
) {
|
|
if(verbosity >= VERB_ALGO) {
|
|
char remotestr[256];
|
|
addr_to_str((void*)&conn->key.paddr.addr,
|
|
conn->key.paddr.addrlen, remotestr,
|
|
sizeof(remotestr));
|
|
verbose(VERB_ALGO, "doq conn %s is deleted "
|
|
"after timeout", remotestr);
|
|
}
|
|
doq_delete_connection(doq_socket->cp, conn);
|
|
continue;
|
|
}
|
|
if(!doq_conn_handle_timeout(conn))
|
|
doq_delete_connection(doq_socket->cp, conn);
|
|
else doq_done_setup_timer_and_write(doq_socket->cp, conn);
|
|
}
|
|
|
|
if(doq_socket_want_write(doq_socket->cp))
|
|
doq_socket_write_enable(doq_socket->cp);
|
|
else doq_socket_write_disable(doq_socket->cp);
|
|
doq_pickup_timer(doq_socket->cp);
|
|
}
|
|
|
|
void
|
|
comm_point_doq_callback(int fd, short event, void* arg)
|
|
{
|
|
struct comm_point* c;
|
|
struct doq_pkt_addr paddr;
|
|
int i, pkt_continue, err_drop;
|
|
struct doq_conn* conn;
|
|
struct ngtcp2_pkt_info pi;
|
|
size_t count, num_len;
|
|
|
|
c = (struct comm_point*)arg;
|
|
log_assert(c->type == comm_doq);
|
|
|
|
log_assert(c && c->doq_socket->pkt_buf && c->fd == fd);
|
|
ub_comm_base_now(c->ev->base);
|
|
|
|
/* see if there is a blocked packet, and send that if possible.
|
|
* do not attempt to read yet, even if possible, that would just
|
|
* push more answers in reply to those read packets onto the list
|
|
* of written replies. First attempt to clear the write content out.
|
|
* That keeps the memory usage from bloating up. */
|
|
if(c->doq_socket->have_blocked_pkt) {
|
|
if(!doq_write_blocked_pkt(c)) {
|
|
/* this write has also blocked, attempt to write
|
|
* later. Make sure the event listens to write
|
|
* events. */
|
|
if(!c->doq_socket->event_has_write)
|
|
doq_socket_write_enable(c);
|
|
doq_pickup_timer(c);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* see if there is write interest */
|
|
count = 0;
|
|
num_len = doq_write_list_length(c);
|
|
while((conn = doq_pop_write_conn(c)) != NULL) {
|
|
if(conn->is_deleted ||
|
|
#ifdef HAVE_NGTCP2_CONN_IN_CLOSING_PERIOD
|
|
ngtcp2_conn_in_closing_period(conn->conn) ||
|
|
#else
|
|
ngtcp2_conn_is_in_closing_period(conn->conn) ||
|
|
#endif
|
|
#ifdef HAVE_NGTCP2_CONN_IN_DRAINING_PERIOD
|
|
ngtcp2_conn_in_draining_period(conn->conn)
|
|
#else
|
|
ngtcp2_conn_is_in_draining_period(conn->conn)
|
|
#endif
|
|
) {
|
|
conn->doq_socket = NULL;
|
|
lock_basic_unlock(&conn->lock);
|
|
if(c->doq_socket->have_blocked_pkt) {
|
|
if(!c->doq_socket->event_has_write)
|
|
doq_socket_write_enable(c);
|
|
doq_pickup_timer(c);
|
|
return;
|
|
}
|
|
if(++count > num_len*2)
|
|
break;
|
|
continue;
|
|
}
|
|
if(verbosity >= VERB_ALGO) {
|
|
char remotestr[256];
|
|
addr_to_str((void*)&conn->key.paddr.addr,
|
|
conn->key.paddr.addrlen, remotestr,
|
|
sizeof(remotestr));
|
|
verbose(VERB_ALGO, "doq write connection %s %d",
|
|
remotestr, doq_sockaddr_get_port(
|
|
&conn->key.paddr.addr));
|
|
}
|
|
if(doq_conn_write_streams(c, conn, &err_drop))
|
|
err_drop = 0;
|
|
doq_done_with_write_cb(c, conn, err_drop);
|
|
if(c->doq_socket->have_blocked_pkt) {
|
|
if(!c->doq_socket->event_has_write)
|
|
doq_socket_write_enable(c);
|
|
doq_pickup_timer(c);
|
|
return;
|
|
}
|
|
/* Stop overly long write lists that are created
|
|
* while we are processing. Do those next time there
|
|
* is a write callback. Stops long loops, and keeps
|
|
* fair for other events. */
|
|
if(++count > num_len*2)
|
|
break;
|
|
}
|
|
|
|
/* check for data to read */
|
|
if((event&UB_EV_READ)!=0)
|
|
for(i=0; i<NUM_UDP_PER_SELECT; i++) {
|
|
/* there may be a blocked write packet and if so, stop
|
|
* reading because the reply cannot get written. The
|
|
* blocked packet could be written during the conn_recv
|
|
* handling of replies, or for a connection close. */
|
|
if(c->doq_socket->have_blocked_pkt) {
|
|
if(!c->doq_socket->event_has_write)
|
|
doq_socket_write_enable(c);
|
|
doq_pickup_timer(c);
|
|
return;
|
|
}
|
|
sldns_buffer_clear(c->doq_socket->pkt_buf);
|
|
doq_pkt_addr_init(&paddr);
|
|
log_assert(fd != -1);
|
|
log_assert(sldns_buffer_remaining(c->doq_socket->pkt_buf) > 0);
|
|
if(!doq_recv(c, &paddr, &pkt_continue, &pi)) {
|
|
if(pkt_continue)
|
|
continue;
|
|
break;
|
|
}
|
|
|
|
/* handle incoming packet from remote addr to localaddr */
|
|
if(verbosity >= VERB_ALGO) {
|
|
char remotestr[256], localstr[256];
|
|
addr_to_str((void*)&paddr.addr, paddr.addrlen,
|
|
remotestr, sizeof(remotestr));
|
|
addr_to_str((void*)&paddr.localaddr,
|
|
paddr.localaddrlen, localstr,
|
|
sizeof(localstr));
|
|
log_info("incoming doq packet from %s port %d on "
|
|
"%s port %d ifindex %d",
|
|
remotestr, doq_sockaddr_get_port(&paddr.addr),
|
|
localstr,
|
|
doq_sockaddr_get_port(&paddr.localaddr),
|
|
paddr.ifindex);
|
|
log_info("doq_recv length %d ecn 0x%x",
|
|
(int)sldns_buffer_limit(c->doq_socket->pkt_buf),
|
|
(int)pi.ecn);
|
|
}
|
|
|
|
if(sldns_buffer_limit(c->doq_socket->pkt_buf) == 0)
|
|
continue;
|
|
|
|
conn = NULL;
|
|
if(!doq_decode_pkt_header_negotiate(c, &paddr, &conn))
|
|
continue;
|
|
if(!conn) {
|
|
if(!doq_accept(c, &paddr, &conn, &pi))
|
|
continue;
|
|
if(!doq_conn_write_streams(c, conn, NULL)) {
|
|
doq_delete_connection(c, conn);
|
|
continue;
|
|
}
|
|
doq_done_setup_timer_and_write(c, conn);
|
|
continue;
|
|
}
|
|
if(
|
|
#ifdef HAVE_NGTCP2_CONN_IN_CLOSING_PERIOD
|
|
ngtcp2_conn_in_closing_period(conn->conn)
|
|
#else
|
|
ngtcp2_conn_is_in_closing_period(conn->conn)
|
|
#endif
|
|
) {
|
|
if(!doq_conn_send_close(c, conn)) {
|
|
doq_delete_connection(c, conn);
|
|
} else {
|
|
doq_done_setup_timer_and_write(c, conn);
|
|
}
|
|
continue;
|
|
}
|
|
if(
|
|
#ifdef HAVE_NGTCP2_CONN_IN_DRAINING_PERIOD
|
|
ngtcp2_conn_in_draining_period(conn->conn)
|
|
#else
|
|
ngtcp2_conn_is_in_draining_period(conn->conn)
|
|
#endif
|
|
) {
|
|
doq_done_setup_timer_and_write(c, conn);
|
|
continue;
|
|
}
|
|
if(!doq_conn_recv(c, &paddr, conn, &pi, NULL, &err_drop)) {
|
|
/* The receive failed, and if it also failed to send
|
|
* a close, drop the connection. That means it is not
|
|
* in the closing period. */
|
|
if(err_drop) {
|
|
doq_delete_connection(c, conn);
|
|
} else {
|
|
doq_done_setup_timer_and_write(c, conn);
|
|
}
|
|
continue;
|
|
}
|
|
if(!doq_conn_write_streams(c, conn, &err_drop)) {
|
|
if(err_drop) {
|
|
doq_delete_connection(c, conn);
|
|
} else {
|
|
doq_done_setup_timer_and_write(c, conn);
|
|
}
|
|
continue;
|
|
}
|
|
doq_done_setup_timer_and_write(c, conn);
|
|
}
|
|
|
|
/* see if we want to have more write events */
|
|
verbose(VERB_ALGO, "doq check write enable");
|
|
if(doq_socket_want_write(c))
|
|
doq_socket_write_enable(c);
|
|
else doq_socket_write_disable(c);
|
|
doq_pickup_timer(c);
|
|
}
|
|
|
|
/** create new doq server socket structure */
|
|
static struct doq_server_socket*
|
|
doq_server_socket_create(struct doq_table* table, struct ub_randstate* rnd,
|
|
const void* quic_sslctx, struct comm_point* c, struct comm_base* base,
|
|
struct config_file* cfg)
|
|
{
|
|
size_t doq_buffer_size = 4096; /* bytes buffer size, for one packet. */
|
|
struct doq_server_socket* doq_socket;
|
|
doq_socket = calloc(1, sizeof(*doq_socket));
|
|
if(!doq_socket) {
|
|
return NULL;
|
|
}
|
|
doq_socket->table = table;
|
|
doq_socket->rnd = rnd;
|
|
doq_socket->validate_addr = 1;
|
|
/* the doq_socket has its own copy of the static secret, as
|
|
* well as other config values, so that they do not need table.lock */
|
|
doq_socket->static_secret_len = table->static_secret_len;
|
|
doq_socket->static_secret = memdup(table->static_secret,
|
|
table->static_secret_len);
|
|
if(!doq_socket->static_secret) {
|
|
free(doq_socket);
|
|
return NULL;
|
|
}
|
|
doq_socket->ctx = (SSL_CTX*)quic_sslctx;
|
|
doq_socket->idle_timeout = table->idle_timeout;
|
|
doq_socket->sv_scidlen = table->sv_scidlen;
|
|
doq_socket->cp = c;
|
|
doq_socket->pkt_buf = sldns_buffer_new(doq_buffer_size);
|
|
if(!doq_socket->pkt_buf) {
|
|
free(doq_socket->static_secret);
|
|
free(doq_socket);
|
|
return NULL;
|
|
}
|
|
doq_socket->blocked_pkt = sldns_buffer_new(
|
|
sldns_buffer_capacity(doq_socket->pkt_buf));
|
|
if(!doq_socket->pkt_buf) {
|
|
free(doq_socket->static_secret);
|
|
sldns_buffer_free(doq_socket->pkt_buf);
|
|
free(doq_socket);
|
|
return NULL;
|
|
}
|
|
doq_socket->blocked_paddr = calloc(1,
|
|
sizeof(*doq_socket->blocked_paddr));
|
|
if(!doq_socket->blocked_paddr) {
|
|
free(doq_socket->static_secret);
|
|
sldns_buffer_free(doq_socket->pkt_buf);
|
|
sldns_buffer_free(doq_socket->blocked_pkt);
|
|
free(doq_socket);
|
|
return NULL;
|
|
}
|
|
doq_socket->timer = comm_timer_create(base, doq_timer_cb, doq_socket);
|
|
if(!doq_socket->timer) {
|
|
free(doq_socket->static_secret);
|
|
sldns_buffer_free(doq_socket->pkt_buf);
|
|
sldns_buffer_free(doq_socket->blocked_pkt);
|
|
free(doq_socket->blocked_paddr);
|
|
free(doq_socket);
|
|
return NULL;
|
|
}
|
|
memset(&doq_socket->marked_time, 0, sizeof(doq_socket->marked_time));
|
|
comm_base_timept(base, &doq_socket->now_tt, &doq_socket->now_tv);
|
|
doq_socket->cfg = cfg;
|
|
return doq_socket;
|
|
}
|
|
|
|
/** delete doq server socket structure */
|
|
static void
|
|
doq_server_socket_delete(struct doq_server_socket* doq_socket)
|
|
{
|
|
if(!doq_socket)
|
|
return;
|
|
free(doq_socket->static_secret);
|
|
#ifndef HAVE_NGTCP2_CRYPTO_QUICTLS_CONFIGURE_SERVER_CONTEXT
|
|
free(doq_socket->quic_method);
|
|
#endif
|
|
sldns_buffer_free(doq_socket->pkt_buf);
|
|
sldns_buffer_free(doq_socket->blocked_pkt);
|
|
free(doq_socket->blocked_paddr);
|
|
comm_timer_delete(doq_socket->timer);
|
|
free(doq_socket);
|
|
}
|
|
|
|
/** find repinfo in the doq table */
|
|
static struct doq_conn*
|
|
doq_lookup_repinfo(struct doq_table* table, struct comm_reply* repinfo)
|
|
{
|
|
struct doq_conn* conn;
|
|
struct doq_conn_key key;
|
|
doq_conn_key_from_repinfo(&key, repinfo);
|
|
lock_rw_rdlock(&table->lock);
|
|
conn = doq_conn_find(table, &key.paddr.addr,
|
|
key.paddr.addrlen, &key.paddr.localaddr,
|
|
key.paddr.localaddrlen, key.paddr.ifindex, key.dcid,
|
|
key.dcidlen);
|
|
if(conn) {
|
|
lock_basic_lock(&conn->lock);
|
|
lock_rw_unlock(&table->lock);
|
|
return conn;
|
|
}
|
|
lock_rw_unlock(&table->lock);
|
|
return NULL;
|
|
}
|
|
|
|
/** doq find connection and stream. From inside callbacks from worker. */
|
|
static int
|
|
doq_lookup_conn_stream(struct comm_reply* repinfo, struct comm_point* c,
|
|
struct doq_conn** conn, struct doq_stream** stream)
|
|
{
|
|
log_assert(c->doq_socket);
|
|
if(c->doq_socket->current_conn) {
|
|
*conn = c->doq_socket->current_conn;
|
|
} else {
|
|
*conn = doq_lookup_repinfo(c->doq_socket->table, repinfo);
|
|
if((*conn) && (*conn)->is_deleted) {
|
|
lock_basic_unlock(&(*conn)->lock);
|
|
*conn = NULL;
|
|
}
|
|
if(*conn) {
|
|
(*conn)->doq_socket = c->doq_socket;
|
|
}
|
|
}
|
|
if(!*conn) {
|
|
*stream = NULL;
|
|
return 0;
|
|
}
|
|
*stream = doq_stream_find(*conn, repinfo->doq_streamid);
|
|
if(!*stream) {
|
|
if(!c->doq_socket->current_conn) {
|
|
/* Not inside callbacks, we have our own lock on conn.
|
|
* Release it. */
|
|
lock_basic_unlock(&(*conn)->lock);
|
|
}
|
|
return 0;
|
|
}
|
|
if((*stream)->is_closed) {
|
|
/* stream is closed, ignore reply or drop */
|
|
if(!c->doq_socket->current_conn) {
|
|
/* Not inside callbacks, we have our own lock on conn.
|
|
* Release it. */
|
|
lock_basic_unlock(&(*conn)->lock);
|
|
}
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/** doq send a reply from a comm reply */
|
|
static void
|
|
doq_socket_send_reply(struct comm_reply* repinfo)
|
|
{
|
|
struct doq_conn* conn;
|
|
struct doq_stream* stream;
|
|
log_assert(repinfo->c->type == comm_doq);
|
|
if(!doq_lookup_conn_stream(repinfo, repinfo->c, &conn, &stream)) {
|
|
verbose(VERB_ALGO, "doq: send_reply but %s is gone",
|
|
(conn?"stream":"connection"));
|
|
/* No stream, it may have been closed. */
|
|
/* Drop the reply, it cannot be sent. */
|
|
return;
|
|
}
|
|
if(!doq_stream_send_reply(conn, stream, repinfo->c->buffer))
|
|
doq_stream_close(conn, stream, 1);
|
|
if(!repinfo->c->doq_socket->current_conn) {
|
|
/* Not inside callbacks, we have our own lock on conn.
|
|
* Release it. */
|
|
doq_done_with_conn_cb(repinfo->c, conn);
|
|
/* since we sent a reply, or closed it, the assumption is
|
|
* that there is something to write, so enable write event.
|
|
* It waits until the write event happens to write the
|
|
* streams with answers, this allows some answers to be
|
|
* answered before the event loop reaches the doq fd, in
|
|
* repinfo->c->fd, and that collates answers. That would
|
|
* not happen if we write doq packets right now. */
|
|
doq_socket_write_enable(repinfo->c);
|
|
}
|
|
}
|
|
|
|
/** doq drop a reply from a comm reply */
|
|
static void
|
|
doq_socket_drop_reply(struct comm_reply* repinfo)
|
|
{
|
|
struct doq_conn* conn;
|
|
struct doq_stream* stream;
|
|
log_assert(repinfo->c->type == comm_doq);
|
|
if(!doq_lookup_conn_stream(repinfo, repinfo->c, &conn, &stream)) {
|
|
verbose(VERB_ALGO, "doq: drop_reply but %s is gone",
|
|
(conn?"stream":"connection"));
|
|
/* The connection or stream is already gone. */
|
|
return;
|
|
}
|
|
doq_stream_close(conn, stream, 1);
|
|
if(!repinfo->c->doq_socket->current_conn) {
|
|
/* Not inside callbacks, we have our own lock on conn.
|
|
* Release it. */
|
|
doq_done_with_conn_cb(repinfo->c, conn);
|
|
doq_socket_write_enable(repinfo->c);
|
|
}
|
|
}
|
|
#endif /* HAVE_NGTCP2 */
|
|
|
|
int adjusted_tcp_timeout(struct comm_point* c)
|
|
{
|
|
if(c->tcp_timeout_msec < TCP_QUERY_TIMEOUT_MINIMUM)
|
|
return TCP_QUERY_TIMEOUT_MINIMUM;
|
|
return c->tcp_timeout_msec;
|
|
}
|
|
|
|
/** Use a new tcp handler for new query fd, set to read query */
|
|
static void
|
|
setup_tcp_handler(struct comm_point* c, int fd, int cur, int max)
|
|
{
|
|
int handler_usage;
|
|
log_assert(c->type == comm_tcp || c->type == comm_http);
|
|
log_assert(c->fd == -1);
|
|
sldns_buffer_clear(c->buffer);
|
|
#ifdef USE_DNSCRYPT
|
|
if (c->dnscrypt)
|
|
sldns_buffer_clear(c->dnscrypt_buffer);
|
|
#endif
|
|
c->tcp_is_reading = 1;
|
|
c->tcp_byte_count = 0;
|
|
c->tcp_keepalive = 0;
|
|
/* if more than half the tcp handlers are in use, use a shorter
|
|
* timeout for this TCP connection, we need to make space for
|
|
* other connections to be able to get attention */
|
|
/* If > 50% TCP handler structures in use, set timeout to 1/100th
|
|
* configured value.
|
|
* If > 65%TCP handler structures in use, set to 1/500th configured
|
|
* value.
|
|
* If > 80% TCP handler structures in use, set to 0.
|
|
*
|
|
* If the timeout to use falls below 200 milliseconds, an actual
|
|
* timeout of 200ms is used.
|
|
*/
|
|
handler_usage = (cur * 100) / max;
|
|
if(handler_usage > 50 && handler_usage <= 65)
|
|
c->tcp_timeout_msec /= 100;
|
|
else if (handler_usage > 65 && handler_usage <= 80)
|
|
c->tcp_timeout_msec /= 500;
|
|
else if (handler_usage > 80)
|
|
c->tcp_timeout_msec = 0;
|
|
comm_point_start_listening(c, fd, adjusted_tcp_timeout(c));
|
|
}
|
|
|
|
void comm_base_handle_slow_accept(int ATTR_UNUSED(fd),
|
|
short ATTR_UNUSED(event), void* arg)
|
|
{
|
|
struct comm_base* b = (struct comm_base*)arg;
|
|
/* timeout for the slow accept, re-enable accepts again */
|
|
if(b->start_accept) {
|
|
verbose(VERB_ALGO, "wait is over, slow accept disabled");
|
|
fptr_ok(fptr_whitelist_start_accept(b->start_accept));
|
|
(*b->start_accept)(b->cb_arg);
|
|
b->eb->slow_accept_enabled = 0;
|
|
}
|
|
}
|
|
|
|
int comm_point_perform_accept(struct comm_point* c,
|
|
struct sockaddr_storage* addr, socklen_t* addrlen)
|
|
{
|
|
int new_fd;
|
|
*addrlen = (socklen_t)sizeof(*addr);
|
|
#ifndef HAVE_ACCEPT4
|
|
new_fd = accept(c->fd, (struct sockaddr*)addr, addrlen);
|
|
#else
|
|
/* SOCK_NONBLOCK saves extra calls to fcntl for the same result */
|
|
new_fd = accept4(c->fd, (struct sockaddr*)addr, addrlen, SOCK_NONBLOCK);
|
|
#endif
|
|
if(new_fd == -1) {
|
|
#ifndef USE_WINSOCK
|
|
/* EINTR is signal interrupt. others are closed connection. */
|
|
if( errno == EINTR || errno == EAGAIN
|
|
#ifdef EWOULDBLOCK
|
|
|| errno == EWOULDBLOCK
|
|
#endif
|
|
#ifdef ECONNABORTED
|
|
|| errno == ECONNABORTED
|
|
#endif
|
|
#ifdef EPROTO
|
|
|| errno == EPROTO
|
|
#endif /* EPROTO */
|
|
)
|
|
return -1;
|
|
#if defined(ENFILE) && defined(EMFILE)
|
|
if(errno == ENFILE || errno == EMFILE) {
|
|
/* out of file descriptors, likely outside of our
|
|
* control. stop accept() calls for some time */
|
|
if(c->ev->base->stop_accept) {
|
|
struct comm_base* b = c->ev->base;
|
|
struct timeval tv;
|
|
verbose(VERB_ALGO, "out of file descriptors: "
|
|
"slow accept");
|
|
ub_comm_base_now(b);
|
|
if(b->eb->last_slow_log+SLOW_LOG_TIME <=
|
|
b->eb->secs) {
|
|
b->eb->last_slow_log = b->eb->secs;
|
|
verbose(VERB_OPS, "accept failed, "
|
|
"slow down accept for %d "
|
|
"msec: %s",
|
|
NETEVENT_SLOW_ACCEPT_TIME,
|
|
sock_strerror(errno));
|
|
}
|
|
b->eb->slow_accept_enabled = 1;
|
|
fptr_ok(fptr_whitelist_stop_accept(
|
|
b->stop_accept));
|
|
(*b->stop_accept)(b->cb_arg);
|
|
/* set timeout, no mallocs */
|
|
tv.tv_sec = NETEVENT_SLOW_ACCEPT_TIME/1000;
|
|
tv.tv_usec = (NETEVENT_SLOW_ACCEPT_TIME%1000)*1000;
|
|
b->eb->slow_accept = ub_event_new(b->eb->base,
|
|
-1, UB_EV_TIMEOUT,
|
|
comm_base_handle_slow_accept, b);
|
|
if(b->eb->slow_accept == NULL) {
|
|
/* we do not want to log here, because
|
|
* that would spam the logfiles.
|
|
* error: "event_base_set failed." */
|
|
}
|
|
else if(ub_event_add(b->eb->slow_accept, &tv)
|
|
!= 0) {
|
|
/* we do not want to log here,
|
|
* error: "event_add failed." */
|
|
}
|
|
} else {
|
|
log_err("accept, with no slow down, "
|
|
"failed: %s", sock_strerror(errno));
|
|
}
|
|
return -1;
|
|
}
|
|
#endif
|
|
#else /* USE_WINSOCK */
|
|
if(WSAGetLastError() == WSAEINPROGRESS ||
|
|
WSAGetLastError() == WSAECONNRESET)
|
|
return -1;
|
|
if(WSAGetLastError() == WSAEWOULDBLOCK) {
|
|
ub_winsock_tcp_wouldblock(c->ev->ev, UB_EV_READ);
|
|
return -1;
|
|
}
|
|
#endif
|
|
log_err_addr("accept failed", sock_strerror(errno), addr,
|
|
*addrlen);
|
|
return -1;
|
|
}
|
|
if(c->tcp_conn_limit && c->type == comm_tcp_accept) {
|
|
c->tcl_addr = tcl_addr_lookup(c->tcp_conn_limit, addr, *addrlen);
|
|
if(!tcl_new_connection(c->tcl_addr)) {
|
|
if(verbosity >= 3)
|
|
log_err_addr("accept rejected",
|
|
"connection limit exceeded", addr, *addrlen);
|
|
sock_close(new_fd);
|
|
return -1;
|
|
}
|
|
}
|
|
#ifndef HAVE_ACCEPT4
|
|
fd_set_nonblock(new_fd);
|
|
#endif
|
|
return new_fd;
|
|
}
|
|
|
|
#ifdef USE_WINSOCK
|
|
static long win_bio_cb(BIO *b, int oper, const char* ATTR_UNUSED(argp),
|
|
#ifdef HAVE_BIO_SET_CALLBACK_EX
|
|
size_t ATTR_UNUSED(len),
|
|
#endif
|
|
int ATTR_UNUSED(argi), long argl,
|
|
#ifndef HAVE_BIO_SET_CALLBACK_EX
|
|
long retvalue
|
|
#else
|
|
int retvalue, size_t* ATTR_UNUSED(processed)
|
|
#endif
|
|
)
|
|
{
|
|
int wsa_err = WSAGetLastError(); /* store errcode before it is gone */
|
|
verbose(VERB_ALGO, "bio_cb %d, %s %s %s", oper,
|
|
(oper&BIO_CB_RETURN)?"return":"before",
|
|
(oper&BIO_CB_READ)?"read":((oper&BIO_CB_WRITE)?"write":"other"),
|
|
wsa_err==WSAEWOULDBLOCK?"wsawb":"");
|
|
/* on windows, check if previous operation caused EWOULDBLOCK */
|
|
if( (oper == (BIO_CB_READ|BIO_CB_RETURN) && argl == 0) ||
|
|
(oper == (BIO_CB_GETS|BIO_CB_RETURN) && argl == 0)) {
|
|
if(wsa_err == WSAEWOULDBLOCK)
|
|
ub_winsock_tcp_wouldblock((struct ub_event*)
|
|
BIO_get_callback_arg(b), UB_EV_READ);
|
|
}
|
|
if( (oper == (BIO_CB_WRITE|BIO_CB_RETURN) && argl == 0) ||
|
|
(oper == (BIO_CB_PUTS|BIO_CB_RETURN) && argl == 0)) {
|
|
if(wsa_err == WSAEWOULDBLOCK)
|
|
ub_winsock_tcp_wouldblock((struct ub_event*)
|
|
BIO_get_callback_arg(b), UB_EV_WRITE);
|
|
}
|
|
/* return original return value */
|
|
return retvalue;
|
|
}
|
|
|
|
/** set win bio callbacks for nonblocking operations */
|
|
void
|
|
comm_point_tcp_win_bio_cb(struct comm_point* c, void* thessl)
|
|
{
|
|
SSL* ssl = (SSL*)thessl;
|
|
/* set them both just in case, but usually they are the same BIO */
|
|
#ifdef HAVE_BIO_SET_CALLBACK_EX
|
|
BIO_set_callback_ex(SSL_get_rbio(ssl), &win_bio_cb);
|
|
#else
|
|
BIO_set_callback(SSL_get_rbio(ssl), &win_bio_cb);
|
|
#endif
|
|
BIO_set_callback_arg(SSL_get_rbio(ssl), (char*)c->ev->ev);
|
|
#ifdef HAVE_BIO_SET_CALLBACK_EX
|
|
BIO_set_callback_ex(SSL_get_wbio(ssl), &win_bio_cb);
|
|
#else
|
|
BIO_set_callback(SSL_get_wbio(ssl), &win_bio_cb);
|
|
#endif
|
|
BIO_set_callback_arg(SSL_get_wbio(ssl), (char*)c->ev->ev);
|
|
}
|
|
#endif
|
|
|
|
#ifdef HAVE_NGHTTP2
|
|
/** Create http2 session server. Per connection, after TCP accepted.*/
|
|
static int http2_session_server_create(struct http2_session* h2_session)
|
|
{
|
|
log_assert(h2_session->callbacks);
|
|
h2_session->is_drop = 0;
|
|
if(nghttp2_session_server_new(&h2_session->session,
|
|
h2_session->callbacks,
|
|
h2_session) == NGHTTP2_ERR_NOMEM) {
|
|
log_err("failed to create nghttp2 session server");
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/** Submit http2 setting to session. Once per session. */
|
|
static int http2_submit_settings(struct http2_session* h2_session)
|
|
{
|
|
int ret;
|
|
nghttp2_settings_entry settings[1] = {
|
|
{NGHTTP2_SETTINGS_MAX_CONCURRENT_STREAMS,
|
|
h2_session->c->http2_max_streams}};
|
|
|
|
ret = nghttp2_submit_settings(h2_session->session, NGHTTP2_FLAG_NONE,
|
|
settings, 1);
|
|
if(ret) {
|
|
verbose(VERB_QUERY, "http2: submit_settings failed, "
|
|
"error: %s", nghttp2_strerror(ret));
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
#endif /* HAVE_NGHTTP2 */
|
|
|
|
#ifdef HAVE_NGHTTP2
|
|
/** Delete http2 stream. After session delete or stream close callback */
|
|
static void http2_stream_delete(struct http2_session* h2_session,
|
|
struct http2_stream* h2_stream)
|
|
{
|
|
if(h2_stream->mesh_state) {
|
|
mesh_state_remove_reply(h2_stream->mesh, h2_stream->mesh_state,
|
|
h2_session->c);
|
|
h2_stream->mesh_state = NULL;
|
|
}
|
|
http2_req_stream_clear(h2_stream);
|
|
free(h2_stream);
|
|
}
|
|
#endif /* HAVE_NGHTTP2 */
|
|
|
|
/** delete http2 session server. After closing connection. */
|
|
static void http2_session_server_delete(struct http2_session* h2_session)
|
|
{
|
|
#ifdef HAVE_NGHTTP2
|
|
struct http2_stream* h2_stream, *next;
|
|
nghttp2_session_del(h2_session->session); /* NULL input is fine */
|
|
h2_session->session = NULL;
|
|
for(h2_stream = h2_session->first_stream; h2_stream;) {
|
|
next = h2_stream->next;
|
|
http2_stream_delete(h2_session, h2_stream);
|
|
h2_stream = next;
|
|
}
|
|
h2_session->first_stream = NULL;
|
|
h2_session->is_drop = 0;
|
|
h2_session->postpone_drop = 0;
|
|
h2_session->c->h2_stream = NULL;
|
|
#endif
|
|
(void)h2_session;
|
|
}
|
|
|
|
void
|
|
comm_point_tcp_accept_callback(int fd, short event, void* arg)
|
|
{
|
|
struct comm_point* c = (struct comm_point*)arg, *c_hdl;
|
|
int new_fd;
|
|
log_assert(c->type == comm_tcp_accept);
|
|
if(!(event & UB_EV_READ)) {
|
|
log_info("ignoring tcp accept event %d", (int)event);
|
|
return;
|
|
}
|
|
ub_comm_base_now(c->ev->base);
|
|
/* find free tcp handler. */
|
|
if(!c->tcp_free) {
|
|
log_warn("accepted too many tcp, connections full");
|
|
return;
|
|
}
|
|
/* accept incoming connection. */
|
|
c_hdl = c->tcp_free;
|
|
/* Should not happen: inconsistent tcp_free state in
|
|
* accept_callback. */
|
|
log_assert(c_hdl->is_in_tcp_free);
|
|
/* clear leftover flags from previous use, and then set the
|
|
* correct event base for the event structure for libevent */
|
|
ub_event_free(c_hdl->ev->ev);
|
|
c_hdl->ev->ev = NULL;
|
|
if((c_hdl->type == comm_tcp && c_hdl->tcp_req_info) ||
|
|
c_hdl->type == comm_local || c_hdl->type == comm_raw)
|
|
c_hdl->tcp_do_toggle_rw = 0;
|
|
else c_hdl->tcp_do_toggle_rw = 1;
|
|
|
|
if(c_hdl->type == comm_http) {
|
|
#ifdef HAVE_NGHTTP2
|
|
if(!c_hdl->h2_session ||
|
|
!http2_session_server_create(c_hdl->h2_session)) {
|
|
log_warn("failed to create nghttp2");
|
|
return;
|
|
}
|
|
if(!c_hdl->h2_session ||
|
|
!http2_submit_settings(c_hdl->h2_session)) {
|
|
log_warn("failed to submit http2 settings");
|
|
if(c_hdl->h2_session)
|
|
http2_session_server_delete(c_hdl->h2_session);
|
|
return;
|
|
}
|
|
if(!c->ssl) {
|
|
c_hdl->tcp_do_toggle_rw = 0;
|
|
c_hdl->use_h2 = 1;
|
|
}
|
|
#endif
|
|
c_hdl->ev->ev = ub_event_new(c_hdl->ev->base->eb->base, -1,
|
|
UB_EV_PERSIST | UB_EV_READ | UB_EV_TIMEOUT,
|
|
comm_point_http_handle_callback, c_hdl);
|
|
} else {
|
|
c_hdl->ev->ev = ub_event_new(c_hdl->ev->base->eb->base, -1,
|
|
UB_EV_PERSIST | UB_EV_READ | UB_EV_TIMEOUT,
|
|
comm_point_tcp_handle_callback, c_hdl);
|
|
}
|
|
if(!c_hdl->ev->ev) {
|
|
log_warn("could not ub_event_new, dropped tcp");
|
|
#ifdef HAVE_NGHTTP2
|
|
if(c_hdl->type == comm_http && c_hdl->h2_session)
|
|
http2_session_server_delete(c_hdl->h2_session);
|
|
#endif
|
|
return;
|
|
}
|
|
log_assert(fd != -1);
|
|
(void)fd;
|
|
new_fd = comm_point_perform_accept(c, &c_hdl->repinfo.remote_addr,
|
|
&c_hdl->repinfo.remote_addrlen);
|
|
if(new_fd == -1) {
|
|
#ifdef HAVE_NGHTTP2
|
|
if(c_hdl->type == comm_http && c_hdl->h2_session)
|
|
http2_session_server_delete(c_hdl->h2_session);
|
|
#endif
|
|
return;
|
|
}
|
|
/* Copy remote_address to client_address.
|
|
* Simplest way/time for streams to do that. */
|
|
c_hdl->repinfo.client_addrlen = c_hdl->repinfo.remote_addrlen;
|
|
memmove(&c_hdl->repinfo.client_addr,
|
|
&c_hdl->repinfo.remote_addr,
|
|
c_hdl->repinfo.remote_addrlen);
|
|
if(c->ssl) {
|
|
c_hdl->ssl = incoming_ssl_fd(c->ssl, new_fd);
|
|
if(!c_hdl->ssl) {
|
|
c_hdl->fd = new_fd;
|
|
comm_point_close(c_hdl);
|
|
return;
|
|
}
|
|
c_hdl->ssl_shake_state = comm_ssl_shake_read;
|
|
#ifdef USE_WINSOCK
|
|
comm_point_tcp_win_bio_cb(c_hdl, c_hdl->ssl);
|
|
#endif
|
|
}
|
|
|
|
/* Paranoia: Check that the state has not changed from above: */
|
|
/* Should not happen: tcp_free state changed within accept_callback. */
|
|
log_assert(c_hdl == c->tcp_free);
|
|
log_assert(c_hdl->is_in_tcp_free);
|
|
/* grab the tcp handler buffers */
|
|
c->cur_tcp_count++;
|
|
c->tcp_free = c_hdl->tcp_free;
|
|
c_hdl->tcp_free = NULL;
|
|
c_hdl->is_in_tcp_free = 0;
|
|
if(!c->tcp_free) {
|
|
/* stop accepting incoming queries for now. */
|
|
comm_point_stop_listening(c);
|
|
}
|
|
setup_tcp_handler(c_hdl, new_fd, c->cur_tcp_count, c->max_tcp_count);
|
|
}
|
|
|
|
/** Make tcp handler free for next assignment */
|
|
static void
|
|
reclaim_tcp_handler(struct comm_point* c)
|
|
{
|
|
log_assert(c->type == comm_tcp);
|
|
if(c->ssl) {
|
|
#ifdef HAVE_SSL
|
|
SSL_shutdown(c->ssl);
|
|
SSL_free(c->ssl);
|
|
c->ssl = NULL;
|
|
#endif
|
|
}
|
|
comm_point_close(c);
|
|
if(c->tcp_parent && !c->is_in_tcp_free) {
|
|
/* Should not happen: bad tcp_free state in reclaim_tcp. */
|
|
log_assert(c->tcp_free == NULL);
|
|
log_assert(c->tcp_parent->cur_tcp_count > 0);
|
|
c->tcp_parent->cur_tcp_count--;
|
|
c->tcp_free = c->tcp_parent->tcp_free;
|
|
c->tcp_parent->tcp_free = c;
|
|
c->is_in_tcp_free = 1;
|
|
if(!c->tcp_free) {
|
|
/* re-enable listening on accept socket */
|
|
comm_point_start_listening(c->tcp_parent, -1, -1);
|
|
}
|
|
}
|
|
c->tcp_more_read_again = NULL;
|
|
c->tcp_more_write_again = NULL;
|
|
c->tcp_byte_count = 0;
|
|
c->pp2_header_state = pp2_header_none;
|
|
sldns_buffer_clear(c->buffer);
|
|
}
|
|
|
|
/** do the callback when writing is done */
|
|
static void
|
|
tcp_callback_writer(struct comm_point* c)
|
|
{
|
|
log_assert(c->type == comm_tcp);
|
|
if(!c->tcp_write_and_read) {
|
|
sldns_buffer_clear(c->buffer);
|
|
c->tcp_byte_count = 0;
|
|
}
|
|
if(c->tcp_do_toggle_rw)
|
|
c->tcp_is_reading = 1;
|
|
/* switch from listening(write) to listening(read) */
|
|
if(c->tcp_req_info) {
|
|
tcp_req_info_handle_writedone(c->tcp_req_info);
|
|
} else {
|
|
comm_point_stop_listening(c);
|
|
if(c->tcp_write_and_read) {
|
|
fptr_ok(fptr_whitelist_comm_point(c->callback));
|
|
if( (*c->callback)(c, c->cb_arg, NETEVENT_PKT_WRITTEN,
|
|
&c->repinfo) ) {
|
|
comm_point_start_listening(c, -1,
|
|
adjusted_tcp_timeout(c));
|
|
}
|
|
} else {
|
|
comm_point_start_listening(c, -1,
|
|
adjusted_tcp_timeout(c));
|
|
}
|
|
}
|
|
}
|
|
|
|
/** do the callback when reading is done */
|
|
static void
|
|
tcp_callback_reader(struct comm_point* c)
|
|
{
|
|
log_assert(c->type == comm_tcp || c->type == comm_local);
|
|
sldns_buffer_flip(c->buffer);
|
|
if(c->tcp_do_toggle_rw)
|
|
c->tcp_is_reading = 0;
|
|
c->tcp_byte_count = 0;
|
|
if(c->tcp_req_info) {
|
|
tcp_req_info_handle_readdone(c->tcp_req_info);
|
|
} else {
|
|
if(c->type == comm_tcp)
|
|
comm_point_stop_listening(c);
|
|
fptr_ok(fptr_whitelist_comm_point(c->callback));
|
|
if( (*c->callback)(c, c->cb_arg, NETEVENT_NOERROR, &c->repinfo) ) {
|
|
comm_point_start_listening(c, -1,
|
|
adjusted_tcp_timeout(c));
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef HAVE_SSL
|
|
/** true if the ssl handshake error has to be squelched from the logs */
|
|
int
|
|
squelch_err_ssl_handshake(unsigned long err)
|
|
{
|
|
if(verbosity >= VERB_QUERY)
|
|
return 0; /* only squelch on low verbosity */
|
|
if(ERR_GET_LIB(err) == ERR_LIB_SSL &&
|
|
(ERR_GET_REASON(err) == SSL_R_HTTPS_PROXY_REQUEST ||
|
|
ERR_GET_REASON(err) == SSL_R_HTTP_REQUEST ||
|
|
ERR_GET_REASON(err) == SSL_R_WRONG_VERSION_NUMBER ||
|
|
ERR_GET_REASON(err) == SSL_R_SSLV3_ALERT_BAD_CERTIFICATE
|
|
#ifdef SSL_F_TLS_POST_PROCESS_CLIENT_HELLO
|
|
|| ERR_GET_REASON(err) == SSL_R_NO_SHARED_CIPHER
|
|
#endif
|
|
#ifdef SSL_F_TLS_EARLY_POST_PROCESS_CLIENT_HELLO
|
|
|| ERR_GET_REASON(err) == SSL_R_UNKNOWN_PROTOCOL
|
|
|| ERR_GET_REASON(err) == SSL_R_UNSUPPORTED_PROTOCOL
|
|
# ifdef SSL_R_VERSION_TOO_LOW
|
|
|| ERR_GET_REASON(err) == SSL_R_VERSION_TOO_LOW
|
|
# endif
|
|
#endif
|
|
))
|
|
return 1;
|
|
return 0;
|
|
}
|
|
#endif /* HAVE_SSL */
|
|
|
|
/** continue ssl handshake */
|
|
#ifdef HAVE_SSL
|
|
static int
|
|
ssl_handshake(struct comm_point* c)
|
|
{
|
|
int r;
|
|
if(c->ssl_shake_state == comm_ssl_shake_hs_read) {
|
|
/* read condition satisfied back to writing */
|
|
comm_point_listen_for_rw(c, 0, 1);
|
|
c->ssl_shake_state = comm_ssl_shake_none;
|
|
return 1;
|
|
}
|
|
if(c->ssl_shake_state == comm_ssl_shake_hs_write) {
|
|
/* write condition satisfied, back to reading */
|
|
comm_point_listen_for_rw(c, 1, 0);
|
|
c->ssl_shake_state = comm_ssl_shake_none;
|
|
return 1;
|
|
}
|
|
|
|
ERR_clear_error();
|
|
r = SSL_do_handshake(c->ssl);
|
|
if(r != 1) {
|
|
int want = SSL_get_error(c->ssl, r);
|
|
if(want == SSL_ERROR_WANT_READ) {
|
|
if(c->ssl_shake_state == comm_ssl_shake_read)
|
|
return 1;
|
|
c->ssl_shake_state = comm_ssl_shake_read;
|
|
comm_point_listen_for_rw(c, 1, 0);
|
|
return 1;
|
|
} else if(want == SSL_ERROR_WANT_WRITE) {
|
|
if(c->ssl_shake_state == comm_ssl_shake_write)
|
|
return 1;
|
|
c->ssl_shake_state = comm_ssl_shake_write;
|
|
comm_point_listen_for_rw(c, 0, 1);
|
|
return 1;
|
|
} else if(r == 0) {
|
|
return 0; /* closed */
|
|
} else if(want == SSL_ERROR_SYSCALL) {
|
|
/* SYSCALL and errno==0 means closed uncleanly */
|
|
#ifdef EPIPE
|
|
if(errno == EPIPE && verbosity < 2)
|
|
return 0; /* silence 'broken pipe' */
|
|
#endif
|
|
#ifdef ECONNRESET
|
|
if(errno == ECONNRESET && verbosity < 2)
|
|
return 0; /* silence reset by peer */
|
|
#endif
|
|
if(!tcp_connect_errno_needs_log(
|
|
(struct sockaddr*)&c->repinfo.remote_addr,
|
|
c->repinfo.remote_addrlen))
|
|
return 0; /* silence connect failures that
|
|
show up because after connect this is the
|
|
first system call that accesses the socket */
|
|
if(errno != 0)
|
|
log_err("SSL_handshake syscall: %s",
|
|
strerror(errno));
|
|
return 0;
|
|
} else {
|
|
unsigned long err = ERR_get_error();
|
|
if(!squelch_err_ssl_handshake(err)) {
|
|
long vr;
|
|
log_crypto_err_io_code("ssl handshake failed",
|
|
want, err);
|
|
if((vr=SSL_get_verify_result(c->ssl)) != 0)
|
|
log_err("ssl handshake cert error: %s",
|
|
X509_verify_cert_error_string(
|
|
vr));
|
|
log_addr(VERB_OPS, "ssl handshake failed",
|
|
&c->repinfo.remote_addr,
|
|
c->repinfo.remote_addrlen);
|
|
}
|
|
return 0;
|
|
}
|
|
}
|
|
/* this is where peer verification could take place */
|
|
if((SSL_get_verify_mode(c->ssl)&SSL_VERIFY_PEER)) {
|
|
/* verification */
|
|
if(SSL_get_verify_result(c->ssl) == X509_V_OK) {
|
|
#ifdef HAVE_SSL_GET1_PEER_CERTIFICATE
|
|
X509* x = SSL_get1_peer_certificate(c->ssl);
|
|
#else
|
|
X509* x = SSL_get_peer_certificate(c->ssl);
|
|
#endif
|
|
if(!x) {
|
|
log_addr(VERB_ALGO, "SSL connection failed: "
|
|
"no certificate",
|
|
&c->repinfo.remote_addr,
|
|
c->repinfo.remote_addrlen);
|
|
return 0;
|
|
}
|
|
log_cert(VERB_ALGO, "peer certificate", x);
|
|
#ifdef HAVE_SSL_GET0_PEERNAME
|
|
if(SSL_get0_peername(c->ssl)) {
|
|
char buf[255];
|
|
snprintf(buf, sizeof(buf), "SSL connection "
|
|
"to %s authenticated",
|
|
SSL_get0_peername(c->ssl));
|
|
log_addr(VERB_ALGO, buf, &c->repinfo.remote_addr,
|
|
c->repinfo.remote_addrlen);
|
|
} else {
|
|
#endif
|
|
log_addr(VERB_ALGO, "SSL connection "
|
|
"authenticated", &c->repinfo.remote_addr,
|
|
c->repinfo.remote_addrlen);
|
|
#ifdef HAVE_SSL_GET0_PEERNAME
|
|
}
|
|
#endif
|
|
X509_free(x);
|
|
} else {
|
|
#ifdef HAVE_SSL_GET1_PEER_CERTIFICATE
|
|
X509* x = SSL_get1_peer_certificate(c->ssl);
|
|
#else
|
|
X509* x = SSL_get_peer_certificate(c->ssl);
|
|
#endif
|
|
if(x) {
|
|
log_cert(VERB_ALGO, "peer certificate", x);
|
|
X509_free(x);
|
|
}
|
|
log_addr(VERB_ALGO, "SSL connection failed: "
|
|
"failed to authenticate",
|
|
&c->repinfo.remote_addr,
|
|
c->repinfo.remote_addrlen);
|
|
return 0;
|
|
}
|
|
} else {
|
|
/* unauthenticated, the verify peer flag was not set
|
|
* in c->ssl when the ssl object was created from ssl_ctx */
|
|
log_addr(VERB_ALGO, "SSL connection", &c->repinfo.remote_addr,
|
|
c->repinfo.remote_addrlen);
|
|
}
|
|
|
|
#ifdef HAVE_SSL_GET0_ALPN_SELECTED
|
|
/* check if http2 use is negotiated */
|
|
if(c->type == comm_http && c->h2_session) {
|
|
const unsigned char *alpn;
|
|
unsigned int alpnlen = 0;
|
|
SSL_get0_alpn_selected(c->ssl, &alpn, &alpnlen);
|
|
if(alpnlen == 2 && memcmp("h2", alpn, 2) == 0) {
|
|
/* connection upgraded to HTTP2 */
|
|
c->tcp_do_toggle_rw = 0;
|
|
c->use_h2 = 1;
|
|
} else {
|
|
verbose(VERB_ALGO, "client doesn't support HTTP/2");
|
|
return 0;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* setup listen rw correctly */
|
|
if(c->tcp_is_reading) {
|
|
if(c->ssl_shake_state != comm_ssl_shake_read)
|
|
comm_point_listen_for_rw(c, 1, 0);
|
|
} else {
|
|
comm_point_listen_for_rw(c, 0, 1);
|
|
}
|
|
c->ssl_shake_state = comm_ssl_shake_none;
|
|
return 1;
|
|
}
|
|
#endif /* HAVE_SSL */
|
|
|
|
/** ssl read callback on TCP */
|
|
static int
|
|
ssl_handle_read(struct comm_point* c)
|
|
{
|
|
#ifdef HAVE_SSL
|
|
int r;
|
|
if(c->ssl_shake_state != comm_ssl_shake_none) {
|
|
if(!ssl_handshake(c))
|
|
return 0;
|
|
if(c->ssl_shake_state != comm_ssl_shake_none)
|
|
return 1;
|
|
}
|
|
if(c->pp2_enabled && c->pp2_header_state != pp2_header_done) {
|
|
struct pp2_header* header = NULL;
|
|
size_t want_read_size = 0;
|
|
size_t current_read_size = 0;
|
|
if(c->pp2_header_state == pp2_header_none) {
|
|
want_read_size = PP2_HEADER_SIZE;
|
|
if(sldns_buffer_remaining(c->buffer)<want_read_size) {
|
|
log_err_addr("proxy_protocol: not enough "
|
|
"buffer size to read PROXYv2 header", "",
|
|
&c->repinfo.remote_addr,
|
|
c->repinfo.remote_addrlen);
|
|
return 0;
|
|
}
|
|
verbose(VERB_ALGO, "proxy_protocol: reading fixed "
|
|
"part of PROXYv2 header (len %lu)",
|
|
(unsigned long)want_read_size);
|
|
current_read_size = want_read_size;
|
|
if(c->tcp_byte_count < current_read_size) {
|
|
ERR_clear_error();
|
|
if((r=SSL_read(c->ssl, (void*)sldns_buffer_at(
|
|
c->buffer, c->tcp_byte_count),
|
|
current_read_size -
|
|
c->tcp_byte_count)) <= 0) {
|
|
int want = SSL_get_error(c->ssl, r);
|
|
if(want == SSL_ERROR_ZERO_RETURN) {
|
|
if(c->tcp_req_info)
|
|
return tcp_req_info_handle_read_close(c->tcp_req_info);
|
|
return 0; /* shutdown, closed */
|
|
} else if(want == SSL_ERROR_WANT_READ) {
|
|
#ifdef USE_WINSOCK
|
|
ub_winsock_tcp_wouldblock(c->ev->ev, UB_EV_READ);
|
|
#endif
|
|
return 1; /* read more later */
|
|
} else if(want == SSL_ERROR_WANT_WRITE) {
|
|
c->ssl_shake_state = comm_ssl_shake_hs_write;
|
|
comm_point_listen_for_rw(c, 0, 1);
|
|
return 1;
|
|
} else if(want == SSL_ERROR_SYSCALL) {
|
|
#ifdef ECONNRESET
|
|
if(errno == ECONNRESET && verbosity < 2)
|
|
return 0; /* silence reset by peer */
|
|
#endif
|
|
if(errno != 0)
|
|
log_err("SSL_read syscall: %s",
|
|
strerror(errno));
|
|
return 0;
|
|
}
|
|
log_crypto_err_io("could not SSL_read",
|
|
want);
|
|
return 0;
|
|
}
|
|
c->tcp_byte_count += r;
|
|
sldns_buffer_skip(c->buffer, r);
|
|
if(c->tcp_byte_count != current_read_size) return 1;
|
|
c->pp2_header_state = pp2_header_init;
|
|
}
|
|
}
|
|
if(c->pp2_header_state == pp2_header_init) {
|
|
int err;
|
|
err = pp2_read_header(
|
|
sldns_buffer_begin(c->buffer),
|
|
sldns_buffer_limit(c->buffer));
|
|
if(err) {
|
|
log_err("proxy_protocol: could not parse "
|
|
"PROXYv2 header (%s)",
|
|
pp_lookup_error(err));
|
|
return 0;
|
|
}
|
|
header = (struct pp2_header*)sldns_buffer_begin(c->buffer);
|
|
want_read_size = ntohs(header->len);
|
|
if(sldns_buffer_limit(c->buffer) <
|
|
PP2_HEADER_SIZE + want_read_size) {
|
|
log_err_addr("proxy_protocol: not enough "
|
|
"buffer size to read PROXYv2 header", "",
|
|
&c->repinfo.remote_addr,
|
|
c->repinfo.remote_addrlen);
|
|
return 0;
|
|
}
|
|
verbose(VERB_ALGO, "proxy_protocol: reading variable "
|
|
"part of PROXYv2 header (len %lu)",
|
|
(unsigned long)want_read_size);
|
|
current_read_size = PP2_HEADER_SIZE + want_read_size;
|
|
if(want_read_size == 0) {
|
|
/* nothing more to read; header is complete */
|
|
c->pp2_header_state = pp2_header_done;
|
|
} else if(c->tcp_byte_count < current_read_size) {
|
|
ERR_clear_error();
|
|
if((r=SSL_read(c->ssl, (void*)sldns_buffer_at(
|
|
c->buffer, c->tcp_byte_count),
|
|
current_read_size -
|
|
c->tcp_byte_count)) <= 0) {
|
|
int want = SSL_get_error(c->ssl, r);
|
|
if(want == SSL_ERROR_ZERO_RETURN) {
|
|
if(c->tcp_req_info)
|
|
return tcp_req_info_handle_read_close(c->tcp_req_info);
|
|
return 0; /* shutdown, closed */
|
|
} else if(want == SSL_ERROR_WANT_READ) {
|
|
#ifdef USE_WINSOCK
|
|
ub_winsock_tcp_wouldblock(c->ev->ev, UB_EV_READ);
|
|
#endif
|
|
return 1; /* read more later */
|
|
} else if(want == SSL_ERROR_WANT_WRITE) {
|
|
c->ssl_shake_state = comm_ssl_shake_hs_write;
|
|
comm_point_listen_for_rw(c, 0, 1);
|
|
return 1;
|
|
} else if(want == SSL_ERROR_SYSCALL) {
|
|
#ifdef ECONNRESET
|
|
if(errno == ECONNRESET && verbosity < 2)
|
|
return 0; /* silence reset by peer */
|
|
#endif
|
|
if(errno != 0)
|
|
log_err("SSL_read syscall: %s",
|
|
strerror(errno));
|
|
return 0;
|
|
}
|
|
log_crypto_err_io("could not SSL_read",
|
|
want);
|
|
return 0;
|
|
}
|
|
c->tcp_byte_count += r;
|
|
sldns_buffer_skip(c->buffer, r);
|
|
if(c->tcp_byte_count != current_read_size) return 1;
|
|
c->pp2_header_state = pp2_header_done;
|
|
}
|
|
}
|
|
if(c->pp2_header_state != pp2_header_done || !header) {
|
|
log_err_addr("proxy_protocol: wrong state for the "
|
|
"PROXYv2 header", "", &c->repinfo.remote_addr,
|
|
c->repinfo.remote_addrlen);
|
|
return 0;
|
|
}
|
|
sldns_buffer_flip(c->buffer);
|
|
if(!consume_pp2_header(c->buffer, &c->repinfo, 1)) {
|
|
log_err_addr("proxy_protocol: could not consume "
|
|
"PROXYv2 header", "", &c->repinfo.remote_addr,
|
|
c->repinfo.remote_addrlen);
|
|
return 0;
|
|
}
|
|
verbose(VERB_ALGO, "proxy_protocol: successful read of "
|
|
"PROXYv2 header");
|
|
/* Clear and reset the buffer to read the following
|
|
* DNS packet(s). */
|
|
sldns_buffer_clear(c->buffer);
|
|
c->tcp_byte_count = 0;
|
|
return 1;
|
|
}
|
|
if(c->tcp_byte_count < sizeof(uint16_t)) {
|
|
/* read length bytes */
|
|
ERR_clear_error();
|
|
if((r=SSL_read(c->ssl, (void*)sldns_buffer_at(c->buffer,
|
|
c->tcp_byte_count), (int)(sizeof(uint16_t) -
|
|
c->tcp_byte_count))) <= 0) {
|
|
int want = SSL_get_error(c->ssl, r);
|
|
if(want == SSL_ERROR_ZERO_RETURN) {
|
|
if(c->tcp_req_info)
|
|
return tcp_req_info_handle_read_close(c->tcp_req_info);
|
|
return 0; /* shutdown, closed */
|
|
} else if(want == SSL_ERROR_WANT_READ) {
|
|
#ifdef USE_WINSOCK
|
|
ub_winsock_tcp_wouldblock(c->ev->ev, UB_EV_READ);
|
|
#endif
|
|
return 1; /* read more later */
|
|
} else if(want == SSL_ERROR_WANT_WRITE) {
|
|
c->ssl_shake_state = comm_ssl_shake_hs_write;
|
|
comm_point_listen_for_rw(c, 0, 1);
|
|
return 1;
|
|
} else if(want == SSL_ERROR_SYSCALL) {
|
|
#ifdef ECONNRESET
|
|
if(errno == ECONNRESET && verbosity < 2)
|
|
return 0; /* silence reset by peer */
|
|
#endif
|
|
if(errno != 0)
|
|
log_err("SSL_read syscall: %s",
|
|
strerror(errno));
|
|
return 0;
|
|
}
|
|
log_crypto_err_io("could not SSL_read", want);
|
|
return 0;
|
|
}
|
|
c->tcp_byte_count += r;
|
|
if(c->tcp_byte_count < sizeof(uint16_t))
|
|
return 1;
|
|
if(sldns_buffer_read_u16_at(c->buffer, 0) >
|
|
sldns_buffer_capacity(c->buffer)) {
|
|
verbose(VERB_QUERY, "ssl: dropped larger than buffer");
|
|
return 0;
|
|
}
|
|
sldns_buffer_set_limit(c->buffer,
|
|
sldns_buffer_read_u16_at(c->buffer, 0));
|
|
if(sldns_buffer_limit(c->buffer) < LDNS_HEADER_SIZE) {
|
|
verbose(VERB_QUERY, "ssl: dropped bogus too short.");
|
|
return 0;
|
|
}
|
|
sldns_buffer_skip(c->buffer, (ssize_t)(c->tcp_byte_count-sizeof(uint16_t)));
|
|
verbose(VERB_ALGO, "Reading ssl tcp query of length %d",
|
|
(int)sldns_buffer_limit(c->buffer));
|
|
}
|
|
if(sldns_buffer_remaining(c->buffer) > 0) {
|
|
ERR_clear_error();
|
|
r = SSL_read(c->ssl, (void*)sldns_buffer_current(c->buffer),
|
|
(int)sldns_buffer_remaining(c->buffer));
|
|
if(r <= 0) {
|
|
int want = SSL_get_error(c->ssl, r);
|
|
if(want == SSL_ERROR_ZERO_RETURN) {
|
|
if(c->tcp_req_info)
|
|
return tcp_req_info_handle_read_close(c->tcp_req_info);
|
|
return 0; /* shutdown, closed */
|
|
} else if(want == SSL_ERROR_WANT_READ) {
|
|
#ifdef USE_WINSOCK
|
|
ub_winsock_tcp_wouldblock(c->ev->ev, UB_EV_READ);
|
|
#endif
|
|
return 1; /* read more later */
|
|
} else if(want == SSL_ERROR_WANT_WRITE) {
|
|
c->ssl_shake_state = comm_ssl_shake_hs_write;
|
|
comm_point_listen_for_rw(c, 0, 1);
|
|
return 1;
|
|
} else if(want == SSL_ERROR_SYSCALL) {
|
|
#ifdef ECONNRESET
|
|
if(errno == ECONNRESET && verbosity < 2)
|
|
return 0; /* silence reset by peer */
|
|
#endif
|
|
if(errno != 0)
|
|
log_err("SSL_read syscall: %s",
|
|
strerror(errno));
|
|
return 0;
|
|
}
|
|
log_crypto_err_io("could not SSL_read", want);
|
|
return 0;
|
|
}
|
|
sldns_buffer_skip(c->buffer, (ssize_t)r);
|
|
}
|
|
if(sldns_buffer_remaining(c->buffer) <= 0) {
|
|
tcp_callback_reader(c);
|
|
}
|
|
return 1;
|
|
#else
|
|
(void)c;
|
|
return 0;
|
|
#endif /* HAVE_SSL */
|
|
}
|
|
|
|
/** ssl write callback on TCP */
|
|
static int
|
|
ssl_handle_write(struct comm_point* c)
|
|
{
|
|
#ifdef HAVE_SSL
|
|
int r;
|
|
if(c->ssl_shake_state != comm_ssl_shake_none) {
|
|
if(!ssl_handshake(c))
|
|
return 0;
|
|
if(c->ssl_shake_state != comm_ssl_shake_none)
|
|
return 1;
|
|
}
|
|
/* ignore return, if fails we may simply block */
|
|
(void)SSL_set_mode(c->ssl, (long)SSL_MODE_ENABLE_PARTIAL_WRITE);
|
|
if((c->tcp_write_and_read?c->tcp_write_byte_count:c->tcp_byte_count) < sizeof(uint16_t)) {
|
|
uint16_t len = htons(c->tcp_write_and_read?c->tcp_write_pkt_len:sldns_buffer_limit(c->buffer));
|
|
ERR_clear_error();
|
|
if(c->tcp_write_and_read) {
|
|
if(c->tcp_write_pkt_len + 2 < LDNS_RR_BUF_SIZE) {
|
|
/* combine the tcp length and the query for
|
|
* write, this emulates writev */
|
|
uint8_t buf[LDNS_RR_BUF_SIZE];
|
|
memmove(buf, &len, sizeof(uint16_t));
|
|
memmove(buf+sizeof(uint16_t),
|
|
c->tcp_write_pkt,
|
|
c->tcp_write_pkt_len);
|
|
r = SSL_write(c->ssl,
|
|
(void*)(buf+c->tcp_write_byte_count),
|
|
c->tcp_write_pkt_len + 2 -
|
|
c->tcp_write_byte_count);
|
|
} else {
|
|
r = SSL_write(c->ssl,
|
|
(void*)(((uint8_t*)&len)+c->tcp_write_byte_count),
|
|
(int)(sizeof(uint16_t)-c->tcp_write_byte_count));
|
|
}
|
|
} else if(sizeof(uint16_t)+sldns_buffer_remaining(c->buffer) <
|
|
LDNS_RR_BUF_SIZE) {
|
|
/* combine the tcp length and the query for write,
|
|
* this emulates writev */
|
|
uint8_t buf[LDNS_RR_BUF_SIZE];
|
|
memmove(buf, &len, sizeof(uint16_t));
|
|
memmove(buf+sizeof(uint16_t),
|
|
sldns_buffer_current(c->buffer),
|
|
sldns_buffer_remaining(c->buffer));
|
|
r = SSL_write(c->ssl, (void*)(buf+c->tcp_byte_count),
|
|
(int)(sizeof(uint16_t)+
|
|
sldns_buffer_remaining(c->buffer)
|
|
- c->tcp_byte_count));
|
|
} else {
|
|
r = SSL_write(c->ssl,
|
|
(void*)(((uint8_t*)&len)+c->tcp_byte_count),
|
|
(int)(sizeof(uint16_t)-c->tcp_byte_count));
|
|
}
|
|
if(r <= 0) {
|
|
int want = SSL_get_error(c->ssl, r);
|
|
if(want == SSL_ERROR_ZERO_RETURN) {
|
|
return 0; /* closed */
|
|
} else if(want == SSL_ERROR_WANT_READ) {
|
|
c->ssl_shake_state = comm_ssl_shake_hs_read;
|
|
comm_point_listen_for_rw(c, 1, 0);
|
|
return 1; /* wait for read condition */
|
|
} else if(want == SSL_ERROR_WANT_WRITE) {
|
|
#ifdef USE_WINSOCK
|
|
ub_winsock_tcp_wouldblock(c->ev->ev, UB_EV_WRITE);
|
|
#endif
|
|
return 1; /* write more later */
|
|
} else if(want == SSL_ERROR_SYSCALL) {
|
|
#ifdef EPIPE
|
|
if(errno == EPIPE && verbosity < 2)
|
|
return 0; /* silence 'broken pipe' */
|
|
#endif
|
|
if(errno != 0)
|
|
log_err("SSL_write syscall: %s",
|
|
strerror(errno));
|
|
return 0;
|
|
}
|
|
log_crypto_err_io("could not SSL_write", want);
|
|
return 0;
|
|
}
|
|
if(c->tcp_write_and_read) {
|
|
c->tcp_write_byte_count += r;
|
|
if(c->tcp_write_byte_count < sizeof(uint16_t))
|
|
return 1;
|
|
} else {
|
|
c->tcp_byte_count += r;
|
|
if(c->tcp_byte_count < sizeof(uint16_t))
|
|
return 1;
|
|
sldns_buffer_set_position(c->buffer, c->tcp_byte_count -
|
|
sizeof(uint16_t));
|
|
}
|
|
if((!c->tcp_write_and_read && sldns_buffer_remaining(c->buffer) == 0) || (c->tcp_write_and_read && c->tcp_write_byte_count == c->tcp_write_pkt_len + 2)) {
|
|
tcp_callback_writer(c);
|
|
return 1;
|
|
}
|
|
}
|
|
log_assert(c->tcp_write_and_read || sldns_buffer_remaining(c->buffer) > 0);
|
|
log_assert(!c->tcp_write_and_read || c->tcp_write_byte_count < c->tcp_write_pkt_len + 2);
|
|
ERR_clear_error();
|
|
if(c->tcp_write_and_read) {
|
|
r = SSL_write(c->ssl, (void*)(c->tcp_write_pkt + c->tcp_write_byte_count - 2),
|
|
(int)(c->tcp_write_pkt_len + 2 - c->tcp_write_byte_count));
|
|
} else {
|
|
r = SSL_write(c->ssl, (void*)sldns_buffer_current(c->buffer),
|
|
(int)sldns_buffer_remaining(c->buffer));
|
|
}
|
|
if(r <= 0) {
|
|
int want = SSL_get_error(c->ssl, r);
|
|
if(want == SSL_ERROR_ZERO_RETURN) {
|
|
return 0; /* closed */
|
|
} else if(want == SSL_ERROR_WANT_READ) {
|
|
c->ssl_shake_state = comm_ssl_shake_hs_read;
|
|
comm_point_listen_for_rw(c, 1, 0);
|
|
return 1; /* wait for read condition */
|
|
} else if(want == SSL_ERROR_WANT_WRITE) {
|
|
#ifdef USE_WINSOCK
|
|
ub_winsock_tcp_wouldblock(c->ev->ev, UB_EV_WRITE);
|
|
#endif
|
|
return 1; /* write more later */
|
|
} else if(want == SSL_ERROR_SYSCALL) {
|
|
#ifdef EPIPE
|
|
if(errno == EPIPE && verbosity < 2)
|
|
return 0; /* silence 'broken pipe' */
|
|
#endif
|
|
if(errno != 0)
|
|
log_err("SSL_write syscall: %s",
|
|
strerror(errno));
|
|
return 0;
|
|
}
|
|
log_crypto_err_io("could not SSL_write", want);
|
|
return 0;
|
|
}
|
|
if(c->tcp_write_and_read) {
|
|
c->tcp_write_byte_count += r;
|
|
} else {
|
|
sldns_buffer_skip(c->buffer, (ssize_t)r);
|
|
}
|
|
|
|
if((!c->tcp_write_and_read && sldns_buffer_remaining(c->buffer) == 0) || (c->tcp_write_and_read && c->tcp_write_byte_count == c->tcp_write_pkt_len + 2)) {
|
|
tcp_callback_writer(c);
|
|
}
|
|
return 1;
|
|
#else
|
|
(void)c;
|
|
return 0;
|
|
#endif /* HAVE_SSL */
|
|
}
|
|
|
|
/** handle ssl tcp connection with dns contents */
|
|
static int
|
|
ssl_handle_it(struct comm_point* c, int is_write)
|
|
{
|
|
/* handle case where renegotiation wants read during write call
|
|
* or write during read calls */
|
|
if(is_write && c->ssl_shake_state == comm_ssl_shake_hs_write)
|
|
return ssl_handle_read(c);
|
|
else if(!is_write && c->ssl_shake_state == comm_ssl_shake_hs_read)
|
|
return ssl_handle_write(c);
|
|
/* handle read events for read operation and write events for a
|
|
* write operation */
|
|
else if(!is_write)
|
|
return ssl_handle_read(c);
|
|
return ssl_handle_write(c);
|
|
}
|
|
|
|
/**
|
|
* Handle tcp reading callback.
|
|
* @param fd: file descriptor of socket.
|
|
* @param c: comm point to read from into buffer.
|
|
* @param short_ok: if true, very short packets are OK (for comm_local).
|
|
* @return: 0 on error
|
|
*/
|
|
static int
|
|
comm_point_tcp_handle_read(int fd, struct comm_point* c, int short_ok)
|
|
{
|
|
ssize_t r;
|
|
int recv_initial = 0;
|
|
log_assert(c->type == comm_tcp || c->type == comm_local);
|
|
if(c->ssl)
|
|
return ssl_handle_it(c, 0);
|
|
if(!c->tcp_is_reading && !c->tcp_write_and_read)
|
|
return 0;
|
|
|
|
log_assert(fd != -1);
|
|
if(c->pp2_enabled && c->pp2_header_state != pp2_header_done) {
|
|
struct pp2_header* header = NULL;
|
|
size_t want_read_size = 0;
|
|
size_t current_read_size = 0;
|
|
if(c->pp2_header_state == pp2_header_none) {
|
|
want_read_size = PP2_HEADER_SIZE;
|
|
if(sldns_buffer_remaining(c->buffer)<want_read_size) {
|
|
log_err_addr("proxy_protocol: not enough "
|
|
"buffer size to read PROXYv2 header", "",
|
|
&c->repinfo.remote_addr,
|
|
c->repinfo.remote_addrlen);
|
|
return 0;
|
|
}
|
|
verbose(VERB_ALGO, "proxy_protocol: reading fixed "
|
|
"part of PROXYv2 header (len %lu)",
|
|
(unsigned long)want_read_size);
|
|
current_read_size = want_read_size;
|
|
if(c->tcp_byte_count < current_read_size) {
|
|
r = recv(fd, (void*)sldns_buffer_at(c->buffer,
|
|
c->tcp_byte_count),
|
|
current_read_size-c->tcp_byte_count, MSG_DONTWAIT);
|
|
if(r == 0) {
|
|
if(c->tcp_req_info)
|
|
return tcp_req_info_handle_read_close(c->tcp_req_info);
|
|
return 0;
|
|
} else if(r == -1) {
|
|
goto recv_error_initial;
|
|
}
|
|
c->tcp_byte_count += r;
|
|
sldns_buffer_skip(c->buffer, r);
|
|
if(c->tcp_byte_count != current_read_size) return 1;
|
|
c->pp2_header_state = pp2_header_init;
|
|
}
|
|
}
|
|
if(c->pp2_header_state == pp2_header_init) {
|
|
int err;
|
|
err = pp2_read_header(
|
|
sldns_buffer_begin(c->buffer),
|
|
sldns_buffer_limit(c->buffer));
|
|
if(err) {
|
|
log_err("proxy_protocol: could not parse "
|
|
"PROXYv2 header (%s)",
|
|
pp_lookup_error(err));
|
|
return 0;
|
|
}
|
|
header = (struct pp2_header*)sldns_buffer_begin(c->buffer);
|
|
want_read_size = ntohs(header->len);
|
|
if(sldns_buffer_limit(c->buffer) <
|
|
PP2_HEADER_SIZE + want_read_size) {
|
|
log_err_addr("proxy_protocol: not enough "
|
|
"buffer size to read PROXYv2 header", "",
|
|
&c->repinfo.remote_addr,
|
|
c->repinfo.remote_addrlen);
|
|
return 0;
|
|
}
|
|
verbose(VERB_ALGO, "proxy_protocol: reading variable "
|
|
"part of PROXYv2 header (len %lu)",
|
|
(unsigned long)want_read_size);
|
|
current_read_size = PP2_HEADER_SIZE + want_read_size;
|
|
if(want_read_size == 0) {
|
|
/* nothing more to read; header is complete */
|
|
c->pp2_header_state = pp2_header_done;
|
|
} else if(c->tcp_byte_count < current_read_size) {
|
|
r = recv(fd, (void*)sldns_buffer_at(c->buffer,
|
|
c->tcp_byte_count),
|
|
current_read_size-c->tcp_byte_count, MSG_DONTWAIT);
|
|
if(r == 0) {
|
|
if(c->tcp_req_info)
|
|
return tcp_req_info_handle_read_close(c->tcp_req_info);
|
|
return 0;
|
|
} else if(r == -1) {
|
|
goto recv_error;
|
|
}
|
|
c->tcp_byte_count += r;
|
|
sldns_buffer_skip(c->buffer, r);
|
|
if(c->tcp_byte_count != current_read_size) return 1;
|
|
c->pp2_header_state = pp2_header_done;
|
|
}
|
|
}
|
|
if(c->pp2_header_state != pp2_header_done || !header) {
|
|
log_err_addr("proxy_protocol: wrong state for the "
|
|
"PROXYv2 header", "", &c->repinfo.remote_addr,
|
|
c->repinfo.remote_addrlen);
|
|
return 0;
|
|
}
|
|
sldns_buffer_flip(c->buffer);
|
|
if(!consume_pp2_header(c->buffer, &c->repinfo, 1)) {
|
|
log_err_addr("proxy_protocol: could not consume "
|
|
"PROXYv2 header", "", &c->repinfo.remote_addr,
|
|
c->repinfo.remote_addrlen);
|
|
return 0;
|
|
}
|
|
verbose(VERB_ALGO, "proxy_protocol: successful read of "
|
|
"PROXYv2 header");
|
|
/* Clear and reset the buffer to read the following
|
|
* DNS packet(s). */
|
|
sldns_buffer_clear(c->buffer);
|
|
c->tcp_byte_count = 0;
|
|
return 1;
|
|
}
|
|
|
|
if(c->tcp_byte_count < sizeof(uint16_t)) {
|
|
/* read length bytes */
|
|
r = recv(fd,(void*)sldns_buffer_at(c->buffer,c->tcp_byte_count),
|
|
sizeof(uint16_t)-c->tcp_byte_count, MSG_DONTWAIT);
|
|
if(r == 0) {
|
|
if(c->tcp_req_info)
|
|
return tcp_req_info_handle_read_close(c->tcp_req_info);
|
|
return 0;
|
|
} else if(r == -1) {
|
|
if(c->pp2_enabled) goto recv_error;
|
|
goto recv_error_initial;
|
|
}
|
|
c->tcp_byte_count += r;
|
|
if(c->tcp_byte_count != sizeof(uint16_t))
|
|
return 1;
|
|
if(sldns_buffer_read_u16_at(c->buffer, 0) >
|
|
sldns_buffer_capacity(c->buffer)) {
|
|
verbose(VERB_QUERY, "tcp: dropped larger than buffer");
|
|
return 0;
|
|
}
|
|
sldns_buffer_set_limit(c->buffer,
|
|
sldns_buffer_read_u16_at(c->buffer, 0));
|
|
if(!short_ok &&
|
|
sldns_buffer_limit(c->buffer) < LDNS_HEADER_SIZE) {
|
|
verbose(VERB_QUERY, "tcp: dropped bogus too short.");
|
|
return 0;
|
|
}
|
|
verbose(VERB_ALGO, "Reading tcp query of length %d",
|
|
(int)sldns_buffer_limit(c->buffer));
|
|
}
|
|
|
|
if(sldns_buffer_remaining(c->buffer) == 0)
|
|
log_err("in comm_point_tcp_handle_read buffer_remaining is "
|
|
"not > 0 as expected, continuing with (harmless) 0 "
|
|
"length recv");
|
|
r = recv(fd, (void*)sldns_buffer_current(c->buffer),
|
|
sldns_buffer_remaining(c->buffer), MSG_DONTWAIT);
|
|
if(r == 0) {
|
|
if(c->tcp_req_info)
|
|
return tcp_req_info_handle_read_close(c->tcp_req_info);
|
|
return 0;
|
|
} else if(r == -1) {
|
|
goto recv_error;
|
|
}
|
|
sldns_buffer_skip(c->buffer, r);
|
|
if(sldns_buffer_remaining(c->buffer) <= 0) {
|
|
tcp_callback_reader(c);
|
|
}
|
|
return 1;
|
|
|
|
recv_error_initial:
|
|
recv_initial = 1;
|
|
recv_error:
|
|
#ifndef USE_WINSOCK
|
|
if(errno == EINTR || errno == EAGAIN)
|
|
return 1;
|
|
#ifdef ECONNRESET
|
|
if(errno == ECONNRESET && verbosity < 2)
|
|
return 0; /* silence reset by peer */
|
|
#endif
|
|
if(recv_initial) {
|
|
#ifdef ECONNREFUSED
|
|
if(errno == ECONNREFUSED && verbosity < 2)
|
|
return 0; /* silence reset by peer */
|
|
#endif
|
|
#ifdef ENETUNREACH
|
|
if(errno == ENETUNREACH && verbosity < 2)
|
|
return 0; /* silence it */
|
|
#endif
|
|
#ifdef EHOSTDOWN
|
|
if(errno == EHOSTDOWN && verbosity < 2)
|
|
return 0; /* silence it */
|
|
#endif
|
|
#ifdef EHOSTUNREACH
|
|
if(errno == EHOSTUNREACH && verbosity < 2)
|
|
return 0; /* silence it */
|
|
#endif
|
|
#ifdef ENETDOWN
|
|
if(errno == ENETDOWN && verbosity < 2)
|
|
return 0; /* silence it */
|
|
#endif
|
|
#ifdef EACCES
|
|
if(errno == EACCES && verbosity < 2)
|
|
return 0; /* silence it */
|
|
#endif
|
|
#ifdef ENOTCONN
|
|
if(errno == ENOTCONN) {
|
|
log_err_addr("read (in tcp initial) failed and this "
|
|
"could be because TCP Fast Open is "
|
|
"enabled [--disable-tfo-client "
|
|
"--disable-tfo-server] but does not "
|
|
"work", sock_strerror(errno),
|
|
&c->repinfo.remote_addr,
|
|
c->repinfo.remote_addrlen);
|
|
return 0;
|
|
}
|
|
#endif
|
|
}
|
|
#else /* USE_WINSOCK */
|
|
if(recv_initial) {
|
|
if(WSAGetLastError() == WSAECONNREFUSED && verbosity < 2)
|
|
return 0;
|
|
if(WSAGetLastError() == WSAEHOSTDOWN && verbosity < 2)
|
|
return 0;
|
|
if(WSAGetLastError() == WSAEHOSTUNREACH && verbosity < 2)
|
|
return 0;
|
|
if(WSAGetLastError() == WSAENETDOWN && verbosity < 2)
|
|
return 0;
|
|
if(WSAGetLastError() == WSAENETUNREACH && verbosity < 2)
|
|
return 0;
|
|
}
|
|
if(WSAGetLastError() == WSAECONNRESET)
|
|
return 0;
|
|
if(WSAGetLastError() == WSAEINPROGRESS)
|
|
return 1;
|
|
if(WSAGetLastError() == WSAEWOULDBLOCK) {
|
|
ub_winsock_tcp_wouldblock(c->ev->ev,
|
|
UB_EV_READ);
|
|
return 1;
|
|
}
|
|
#endif
|
|
log_err_addr((recv_initial?"read (in tcp initial)":"read (in tcp)"),
|
|
sock_strerror(errno), &c->repinfo.remote_addr,
|
|
c->repinfo.remote_addrlen);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Handle tcp writing callback.
|
|
* @param fd: file descriptor of socket.
|
|
* @param c: comm point to write buffer out of.
|
|
* @return: 0 on error
|
|
*/
|
|
static int
|
|
comm_point_tcp_handle_write(int fd, struct comm_point* c)
|
|
{
|
|
ssize_t r;
|
|
struct sldns_buffer *buffer;
|
|
log_assert(c->type == comm_tcp);
|
|
#ifdef USE_DNSCRYPT
|
|
buffer = c->dnscrypt_buffer;
|
|
#else
|
|
buffer = c->buffer;
|
|
#endif
|
|
if(c->tcp_is_reading && !c->ssl && !c->tcp_write_and_read)
|
|
return 0;
|
|
log_assert(fd != -1);
|
|
if(((!c->tcp_write_and_read && c->tcp_byte_count == 0) || (c->tcp_write_and_read && c->tcp_write_byte_count == 0)) && c->tcp_check_nb_connect) {
|
|
/* check for pending error from nonblocking connect */
|
|
/* from Stevens, unix network programming, vol1, 3rd ed, p450*/
|
|
int error = 0;
|
|
socklen_t len = (socklen_t)sizeof(error);
|
|
if(getsockopt(fd, SOL_SOCKET, SO_ERROR, (void*)&error,
|
|
&len) < 0){
|
|
#ifndef USE_WINSOCK
|
|
error = errno; /* on solaris errno is error */
|
|
#else /* USE_WINSOCK */
|
|
error = WSAGetLastError();
|
|
#endif
|
|
}
|
|
#ifndef USE_WINSOCK
|
|
#if defined(EINPROGRESS) && defined(EWOULDBLOCK)
|
|
if(error == EINPROGRESS || error == EWOULDBLOCK)
|
|
return 1; /* try again later */
|
|
else
|
|
#endif
|
|
if(error != 0 && verbosity < 2)
|
|
return 0; /* silence lots of chatter in the logs */
|
|
else if(error != 0) {
|
|
log_err_addr("tcp connect", strerror(error),
|
|
&c->repinfo.remote_addr,
|
|
c->repinfo.remote_addrlen);
|
|
#else /* USE_WINSOCK */
|
|
/* examine error */
|
|
if(error == WSAEINPROGRESS)
|
|
return 1;
|
|
else if(error == WSAEWOULDBLOCK) {
|
|
ub_winsock_tcp_wouldblock(c->ev->ev, UB_EV_WRITE);
|
|
return 1;
|
|
} else if(error != 0 && verbosity < 2)
|
|
return 0;
|
|
else if(error != 0) {
|
|
log_err_addr("tcp connect", wsa_strerror(error),
|
|
&c->repinfo.remote_addr,
|
|
c->repinfo.remote_addrlen);
|
|
#endif /* USE_WINSOCK */
|
|
return 0;
|
|
}
|
|
}
|
|
if(c->ssl)
|
|
return ssl_handle_it(c, 1);
|
|
|
|
#ifdef USE_MSG_FASTOPEN
|
|
/* Only try this on first use of a connection that uses tfo,
|
|
otherwise fall through to normal write */
|
|
/* Also, TFO support on WINDOWS not implemented at the moment */
|
|
if(c->tcp_do_fastopen == 1) {
|
|
/* this form of sendmsg() does both a connect() and send() so need to
|
|
look for various flavours of error*/
|
|
uint16_t len = htons(c->tcp_write_and_read?c->tcp_write_pkt_len:sldns_buffer_limit(buffer));
|
|
struct msghdr msg;
|
|
struct iovec iov[2];
|
|
c->tcp_do_fastopen = 0;
|
|
memset(&msg, 0, sizeof(msg));
|
|
if(c->tcp_write_and_read) {
|
|
iov[0].iov_base = (uint8_t*)&len + c->tcp_write_byte_count;
|
|
iov[0].iov_len = sizeof(uint16_t) - c->tcp_write_byte_count;
|
|
iov[1].iov_base = c->tcp_write_pkt;
|
|
iov[1].iov_len = c->tcp_write_pkt_len;
|
|
} else {
|
|
iov[0].iov_base = (uint8_t*)&len + c->tcp_byte_count;
|
|
iov[0].iov_len = sizeof(uint16_t) - c->tcp_byte_count;
|
|
iov[1].iov_base = sldns_buffer_begin(buffer);
|
|
iov[1].iov_len = sldns_buffer_limit(buffer);
|
|
}
|
|
log_assert(iov[0].iov_len > 0);
|
|
msg.msg_name = &c->repinfo.remote_addr;
|
|
msg.msg_namelen = c->repinfo.remote_addrlen;
|
|
msg.msg_iov = iov;
|
|
msg.msg_iovlen = 2;
|
|
r = sendmsg(fd, &msg, MSG_FASTOPEN);
|
|
if (r == -1) {
|
|
#if defined(EINPROGRESS) && defined(EWOULDBLOCK)
|
|
/* Handshake is underway, maybe because no TFO cookie available.
|
|
Come back to write the message*/
|
|
if(errno == EINPROGRESS || errno == EWOULDBLOCK)
|
|
return 1;
|
|
#endif
|
|
if(errno == EINTR || errno == EAGAIN)
|
|
return 1;
|
|
/* Not handling EISCONN here as shouldn't ever hit that case.*/
|
|
if(errno != EPIPE
|
|
#ifdef EOPNOTSUPP
|
|
/* if /proc/sys/net/ipv4/tcp_fastopen is
|
|
* disabled on Linux, sendmsg may return
|
|
* 'Operation not supported', if so
|
|
* fallthrough to ordinary connect. */
|
|
&& errno != EOPNOTSUPP
|
|
#endif
|
|
&& errno != 0) {
|
|
if(verbosity < 2)
|
|
return 0; /* silence lots of chatter in the logs */
|
|
log_err_addr("tcp sendmsg", strerror(errno),
|
|
&c->repinfo.remote_addr,
|
|
c->repinfo.remote_addrlen);
|
|
return 0;
|
|
}
|
|
verbose(VERB_ALGO, "tcp sendmsg for fastopen failed (with %s), try normal connect", strerror(errno));
|
|
/* fallthrough to nonFASTOPEN
|
|
* (MSG_FASTOPEN on Linux 3 produces EPIPE)
|
|
* we need to perform connect() */
|
|
if(connect(fd, (struct sockaddr *)&c->repinfo.remote_addr,
|
|
c->repinfo.remote_addrlen) == -1) {
|
|
#ifdef EINPROGRESS
|
|
if(errno == EINPROGRESS)
|
|
return 1; /* wait until connect done*/
|
|
#endif
|
|
#ifdef USE_WINSOCK
|
|
if(WSAGetLastError() == WSAEINPROGRESS ||
|
|
WSAGetLastError() == WSAEWOULDBLOCK)
|
|
return 1; /* wait until connect done*/
|
|
#endif
|
|
if(tcp_connect_errno_needs_log(
|
|
(struct sockaddr *)&c->repinfo.remote_addr,
|
|
c->repinfo.remote_addrlen)) {
|
|
log_err_addr("outgoing tcp: connect after EPIPE for fastopen",
|
|
strerror(errno),
|
|
&c->repinfo.remote_addr,
|
|
c->repinfo.remote_addrlen);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
} else {
|
|
if(c->tcp_write_and_read) {
|
|
c->tcp_write_byte_count += r;
|
|
if(c->tcp_write_byte_count < sizeof(uint16_t))
|
|
return 1;
|
|
} else {
|
|
c->tcp_byte_count += r;
|
|
if(c->tcp_byte_count < sizeof(uint16_t))
|
|
return 1;
|
|
sldns_buffer_set_position(buffer, c->tcp_byte_count -
|
|
sizeof(uint16_t));
|
|
}
|
|
if((!c->tcp_write_and_read && sldns_buffer_remaining(buffer) == 0) || (c->tcp_write_and_read && c->tcp_write_byte_count == c->tcp_write_pkt_len + 2)) {
|
|
tcp_callback_writer(c);
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
#endif /* USE_MSG_FASTOPEN */
|
|
|
|
if((c->tcp_write_and_read?c->tcp_write_byte_count:c->tcp_byte_count) < sizeof(uint16_t)) {
|
|
uint16_t len = htons(c->tcp_write_and_read?c->tcp_write_pkt_len:sldns_buffer_limit(buffer));
|
|
#ifdef HAVE_WRITEV
|
|
struct iovec iov[2];
|
|
if(c->tcp_write_and_read) {
|
|
iov[0].iov_base = (uint8_t*)&len + c->tcp_write_byte_count;
|
|
iov[0].iov_len = sizeof(uint16_t) - c->tcp_write_byte_count;
|
|
iov[1].iov_base = c->tcp_write_pkt;
|
|
iov[1].iov_len = c->tcp_write_pkt_len;
|
|
} else {
|
|
iov[0].iov_base = (uint8_t*)&len + c->tcp_byte_count;
|
|
iov[0].iov_len = sizeof(uint16_t) - c->tcp_byte_count;
|
|
iov[1].iov_base = sldns_buffer_begin(buffer);
|
|
iov[1].iov_len = sldns_buffer_limit(buffer);
|
|
}
|
|
log_assert(iov[0].iov_len > 0);
|
|
r = writev(fd, iov, 2);
|
|
#else /* HAVE_WRITEV */
|
|
if(c->tcp_write_and_read) {
|
|
r = send(fd, (void*)(((uint8_t*)&len)+c->tcp_write_byte_count),
|
|
sizeof(uint16_t)-c->tcp_write_byte_count, 0);
|
|
} else {
|
|
r = send(fd, (void*)(((uint8_t*)&len)+c->tcp_byte_count),
|
|
sizeof(uint16_t)-c->tcp_byte_count, 0);
|
|
}
|
|
#endif /* HAVE_WRITEV */
|
|
if(r == -1) {
|
|
#ifndef USE_WINSOCK
|
|
# ifdef EPIPE
|
|
if(errno == EPIPE && verbosity < 2)
|
|
return 0; /* silence 'broken pipe' */
|
|
#endif
|
|
if(errno == EINTR || errno == EAGAIN)
|
|
return 1;
|
|
#ifdef ECONNRESET
|
|
if(errno == ECONNRESET && verbosity < 2)
|
|
return 0; /* silence reset by peer */
|
|
#endif
|
|
# ifdef HAVE_WRITEV
|
|
log_err_addr("tcp writev", strerror(errno),
|
|
&c->repinfo.remote_addr,
|
|
c->repinfo.remote_addrlen);
|
|
# else /* HAVE_WRITEV */
|
|
log_err_addr("tcp send s", strerror(errno),
|
|
&c->repinfo.remote_addr,
|
|
c->repinfo.remote_addrlen);
|
|
# endif /* HAVE_WRITEV */
|
|
#else
|
|
if(WSAGetLastError() == WSAENOTCONN)
|
|
return 1;
|
|
if(WSAGetLastError() == WSAEINPROGRESS)
|
|
return 1;
|
|
if(WSAGetLastError() == WSAEWOULDBLOCK) {
|
|
ub_winsock_tcp_wouldblock(c->ev->ev,
|
|
UB_EV_WRITE);
|
|
return 1;
|
|
}
|
|
if(WSAGetLastError() == WSAECONNRESET && verbosity < 2)
|
|
return 0; /* silence reset by peer */
|
|
log_err_addr("tcp send s",
|
|
wsa_strerror(WSAGetLastError()),
|
|
&c->repinfo.remote_addr,
|
|
c->repinfo.remote_addrlen);
|
|
#endif
|
|
return 0;
|
|
}
|
|
if(c->tcp_write_and_read) {
|
|
c->tcp_write_byte_count += r;
|
|
if(c->tcp_write_byte_count < sizeof(uint16_t))
|
|
return 1;
|
|
} else {
|
|
c->tcp_byte_count += r;
|
|
if(c->tcp_byte_count < sizeof(uint16_t))
|
|
return 1;
|
|
sldns_buffer_set_position(buffer, c->tcp_byte_count -
|
|
sizeof(uint16_t));
|
|
}
|
|
if((!c->tcp_write_and_read && sldns_buffer_remaining(buffer) == 0) || (c->tcp_write_and_read && c->tcp_write_byte_count == c->tcp_write_pkt_len + 2)) {
|
|
tcp_callback_writer(c);
|
|
return 1;
|
|
}
|
|
}
|
|
log_assert(c->tcp_write_and_read || sldns_buffer_remaining(buffer) > 0);
|
|
log_assert(!c->tcp_write_and_read || c->tcp_write_byte_count < c->tcp_write_pkt_len + 2);
|
|
if(c->tcp_write_and_read) {
|
|
r = send(fd, (void*)(c->tcp_write_pkt + c->tcp_write_byte_count - 2),
|
|
c->tcp_write_pkt_len + 2 - c->tcp_write_byte_count, 0);
|
|
} else {
|
|
r = send(fd, (void*)sldns_buffer_current(buffer),
|
|
sldns_buffer_remaining(buffer), 0);
|
|
}
|
|
if(r == -1) {
|
|
#ifndef USE_WINSOCK
|
|
if(errno == EINTR || errno == EAGAIN)
|
|
return 1;
|
|
#ifdef ECONNRESET
|
|
if(errno == ECONNRESET && verbosity < 2)
|
|
return 0; /* silence reset by peer */
|
|
#endif
|
|
#else
|
|
if(WSAGetLastError() == WSAEINPROGRESS)
|
|
return 1;
|
|
if(WSAGetLastError() == WSAEWOULDBLOCK) {
|
|
ub_winsock_tcp_wouldblock(c->ev->ev, UB_EV_WRITE);
|
|
return 1;
|
|
}
|
|
if(WSAGetLastError() == WSAECONNRESET && verbosity < 2)
|
|
return 0; /* silence reset by peer */
|
|
#endif
|
|
log_err_addr("tcp send r", sock_strerror(errno),
|
|
&c->repinfo.remote_addr,
|
|
c->repinfo.remote_addrlen);
|
|
return 0;
|
|
}
|
|
if(c->tcp_write_and_read) {
|
|
c->tcp_write_byte_count += r;
|
|
} else {
|
|
sldns_buffer_skip(buffer, r);
|
|
}
|
|
|
|
if((!c->tcp_write_and_read && sldns_buffer_remaining(buffer) == 0) || (c->tcp_write_and_read && c->tcp_write_byte_count == c->tcp_write_pkt_len + 2)) {
|
|
tcp_callback_writer(c);
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/** read again to drain buffers when there could be more to read, returns 0
|
|
* on failure which means the comm point is closed. */
|
|
static int
|
|
tcp_req_info_read_again(int fd, struct comm_point* c)
|
|
{
|
|
while(c->tcp_req_info->read_again) {
|
|
int r;
|
|
c->tcp_req_info->read_again = 0;
|
|
if(c->tcp_is_reading)
|
|
r = comm_point_tcp_handle_read(fd, c, 0);
|
|
else r = comm_point_tcp_handle_write(fd, c);
|
|
if(!r) {
|
|
reclaim_tcp_handler(c);
|
|
if(!c->tcp_do_close) {
|
|
fptr_ok(fptr_whitelist_comm_point(
|
|
c->callback));
|
|
(void)(*c->callback)(c, c->cb_arg,
|
|
NETEVENT_CLOSED, NULL);
|
|
}
|
|
return 0;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/** read again to drain buffers when there could be more to read */
|
|
static void
|
|
tcp_more_read_again(int fd, struct comm_point* c)
|
|
{
|
|
/* if the packet is done, but another one could be waiting on
|
|
* the connection, the callback signals this, and we try again */
|
|
/* this continues until the read routines get EAGAIN or so,
|
|
* and thus does not call the callback, and the bool is 0 */
|
|
int* moreread = c->tcp_more_read_again;
|
|
while(moreread && *moreread) {
|
|
*moreread = 0;
|
|
if(!comm_point_tcp_handle_read(fd, c, 0)) {
|
|
reclaim_tcp_handler(c);
|
|
if(!c->tcp_do_close) {
|
|
fptr_ok(fptr_whitelist_comm_point(
|
|
c->callback));
|
|
(void)(*c->callback)(c, c->cb_arg,
|
|
NETEVENT_CLOSED, NULL);
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
/** write again to fill up when there could be more to write */
|
|
static void
|
|
tcp_more_write_again(int fd, struct comm_point* c)
|
|
{
|
|
/* if the packet is done, but another is waiting to be written,
|
|
* the callback signals it and we try again. */
|
|
/* this continues until the write routines get EAGAIN or so,
|
|
* and thus does not call the callback, and the bool is 0 */
|
|
int* morewrite = c->tcp_more_write_again;
|
|
while(morewrite && *morewrite) {
|
|
*morewrite = 0;
|
|
if(!comm_point_tcp_handle_write(fd, c)) {
|
|
reclaim_tcp_handler(c);
|
|
if(!c->tcp_do_close) {
|
|
fptr_ok(fptr_whitelist_comm_point(
|
|
c->callback));
|
|
(void)(*c->callback)(c, c->cb_arg,
|
|
NETEVENT_CLOSED, NULL);
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
comm_point_tcp_handle_callback(int fd, short event, void* arg)
|
|
{
|
|
struct comm_point* c = (struct comm_point*)arg;
|
|
log_assert(c->type == comm_tcp);
|
|
ub_comm_base_now(c->ev->base);
|
|
|
|
if(c->fd == -1 || c->fd != fd)
|
|
return; /* duplicate event, but commpoint closed. */
|
|
|
|
#ifdef USE_DNSCRYPT
|
|
/* Initialize if this is a dnscrypt socket */
|
|
if(c->tcp_parent) {
|
|
c->dnscrypt = c->tcp_parent->dnscrypt;
|
|
}
|
|
if(c->dnscrypt && c->dnscrypt_buffer == c->buffer) {
|
|
c->dnscrypt_buffer = sldns_buffer_new(sldns_buffer_capacity(c->buffer));
|
|
if(!c->dnscrypt_buffer) {
|
|
log_err("Could not allocate dnscrypt buffer");
|
|
reclaim_tcp_handler(c);
|
|
if(!c->tcp_do_close) {
|
|
fptr_ok(fptr_whitelist_comm_point(
|
|
c->callback));
|
|
(void)(*c->callback)(c, c->cb_arg,
|
|
NETEVENT_CLOSED, NULL);
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if((event&UB_EV_TIMEOUT)) {
|
|
verbose(VERB_QUERY, "tcp took too long, dropped");
|
|
reclaim_tcp_handler(c);
|
|
if(!c->tcp_do_close) {
|
|
fptr_ok(fptr_whitelist_comm_point(c->callback));
|
|
(void)(*c->callback)(c, c->cb_arg,
|
|
NETEVENT_TIMEOUT, NULL);
|
|
}
|
|
return;
|
|
}
|
|
if((event&UB_EV_READ)
|
|
#ifdef USE_MSG_FASTOPEN
|
|
&& !(c->tcp_do_fastopen && (event&UB_EV_WRITE))
|
|
#endif
|
|
) {
|
|
int has_tcpq = (c->tcp_req_info != NULL);
|
|
int* moreread = c->tcp_more_read_again;
|
|
if(!comm_point_tcp_handle_read(fd, c, 0)) {
|
|
reclaim_tcp_handler(c);
|
|
if(!c->tcp_do_close) {
|
|
fptr_ok(fptr_whitelist_comm_point(
|
|
c->callback));
|
|
(void)(*c->callback)(c, c->cb_arg,
|
|
NETEVENT_CLOSED, NULL);
|
|
}
|
|
return;
|
|
}
|
|
if(has_tcpq && c->tcp_req_info && c->tcp_req_info->read_again) {
|
|
if(!tcp_req_info_read_again(fd, c))
|
|
return;
|
|
}
|
|
if(moreread && *moreread)
|
|
tcp_more_read_again(fd, c);
|
|
return;
|
|
}
|
|
if((event&UB_EV_WRITE)) {
|
|
int has_tcpq = (c->tcp_req_info != NULL);
|
|
int* morewrite = c->tcp_more_write_again;
|
|
if(!comm_point_tcp_handle_write(fd, c)) {
|
|
reclaim_tcp_handler(c);
|
|
if(!c->tcp_do_close) {
|
|
fptr_ok(fptr_whitelist_comm_point(
|
|
c->callback));
|
|
(void)(*c->callback)(c, c->cb_arg,
|
|
NETEVENT_CLOSED, NULL);
|
|
}
|
|
return;
|
|
}
|
|
if(has_tcpq && c->tcp_req_info && c->tcp_req_info->read_again) {
|
|
if(!tcp_req_info_read_again(fd, c))
|
|
return;
|
|
}
|
|
if(morewrite && *morewrite)
|
|
tcp_more_write_again(fd, c);
|
|
return;
|
|
}
|
|
log_err("Ignored event %d for tcphdl.", event);
|
|
}
|
|
|
|
/** Make http handler free for next assignment */
|
|
static void
|
|
reclaim_http_handler(struct comm_point* c)
|
|
{
|
|
log_assert(c->type == comm_http);
|
|
if(c->ssl) {
|
|
#ifdef HAVE_SSL
|
|
SSL_shutdown(c->ssl);
|
|
SSL_free(c->ssl);
|
|
c->ssl = NULL;
|
|
#endif
|
|
}
|
|
comm_point_close(c);
|
|
if(c->tcp_parent && !c->is_in_tcp_free) {
|
|
/* Should not happen: bad tcp_free state in reclaim_http. */
|
|
log_assert(c->tcp_free == NULL);
|
|
log_assert(c->tcp_parent->cur_tcp_count > 0);
|
|
c->tcp_parent->cur_tcp_count--;
|
|
c->tcp_free = c->tcp_parent->tcp_free;
|
|
c->tcp_parent->tcp_free = c;
|
|
c->is_in_tcp_free = 1;
|
|
if(!c->tcp_free) {
|
|
/* re-enable listening on accept socket */
|
|
comm_point_start_listening(c->tcp_parent, -1, -1);
|
|
}
|
|
}
|
|
}
|
|
|
|
/** read more data for http (with ssl) */
|
|
static int
|
|
ssl_http_read_more(struct comm_point* c)
|
|
{
|
|
#ifdef HAVE_SSL
|
|
int r;
|
|
log_assert(sldns_buffer_remaining(c->buffer) > 0);
|
|
ERR_clear_error();
|
|
r = SSL_read(c->ssl, (void*)sldns_buffer_current(c->buffer),
|
|
(int)sldns_buffer_remaining(c->buffer));
|
|
if(r <= 0) {
|
|
int want = SSL_get_error(c->ssl, r);
|
|
if(want == SSL_ERROR_ZERO_RETURN) {
|
|
return 0; /* shutdown, closed */
|
|
} else if(want == SSL_ERROR_WANT_READ) {
|
|
return 1; /* read more later */
|
|
} else if(want == SSL_ERROR_WANT_WRITE) {
|
|
c->ssl_shake_state = comm_ssl_shake_hs_write;
|
|
comm_point_listen_for_rw(c, 0, 1);
|
|
return 1;
|
|
} else if(want == SSL_ERROR_SYSCALL) {
|
|
#ifdef ECONNRESET
|
|
if(errno == ECONNRESET && verbosity < 2)
|
|
return 0; /* silence reset by peer */
|
|
#endif
|
|
if(errno != 0)
|
|
log_err("SSL_read syscall: %s",
|
|
strerror(errno));
|
|
return 0;
|
|
}
|
|
log_crypto_err_io("could not SSL_read", want);
|
|
return 0;
|
|
}
|
|
verbose(VERB_ALGO, "ssl http read more skip to %d + %d",
|
|
(int)sldns_buffer_position(c->buffer), (int)r);
|
|
sldns_buffer_skip(c->buffer, (ssize_t)r);
|
|
return 1;
|
|
#else
|
|
(void)c;
|
|
return 0;
|
|
#endif /* HAVE_SSL */
|
|
}
|
|
|
|
/** read more data for http */
|
|
static int
|
|
http_read_more(int fd, struct comm_point* c)
|
|
{
|
|
ssize_t r;
|
|
log_assert(sldns_buffer_remaining(c->buffer) > 0);
|
|
r = recv(fd, (void*)sldns_buffer_current(c->buffer),
|
|
sldns_buffer_remaining(c->buffer), MSG_DONTWAIT);
|
|
if(r == 0) {
|
|
return 0;
|
|
} else if(r == -1) {
|
|
#ifndef USE_WINSOCK
|
|
if(errno == EINTR || errno == EAGAIN)
|
|
return 1;
|
|
#else /* USE_WINSOCK */
|
|
if(WSAGetLastError() == WSAECONNRESET)
|
|
return 0;
|
|
if(WSAGetLastError() == WSAEINPROGRESS)
|
|
return 1;
|
|
if(WSAGetLastError() == WSAEWOULDBLOCK) {
|
|
ub_winsock_tcp_wouldblock(c->ev->ev, UB_EV_READ);
|
|
return 1;
|
|
}
|
|
#endif
|
|
log_err_addr("read (in http r)", sock_strerror(errno),
|
|
&c->repinfo.remote_addr, c->repinfo.remote_addrlen);
|
|
return 0;
|
|
}
|
|
verbose(VERB_ALGO, "http read more skip to %d + %d",
|
|
(int)sldns_buffer_position(c->buffer), (int)r);
|
|
sldns_buffer_skip(c->buffer, r);
|
|
return 1;
|
|
}
|
|
|
|
/** return true if http header has been read (one line complete) */
|
|
static int
|
|
http_header_done(sldns_buffer* buf)
|
|
{
|
|
size_t i;
|
|
for(i=sldns_buffer_position(buf); i<sldns_buffer_limit(buf); i++) {
|
|
/* there was a \r before the \n, but we ignore that */
|
|
if((char)sldns_buffer_read_u8_at(buf, i) == '\n')
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/** return character string into buffer for header line, moves buffer
|
|
* past that line and puts zero terminator into linefeed-newline */
|
|
static char*
|
|
http_header_line(sldns_buffer* buf)
|
|
{
|
|
char* result = (char*)sldns_buffer_current(buf);
|
|
size_t i;
|
|
for(i=sldns_buffer_position(buf); i<sldns_buffer_limit(buf); i++) {
|
|
/* terminate the string on the \r */
|
|
if((char)sldns_buffer_read_u8_at(buf, i) == '\r')
|
|
sldns_buffer_write_u8_at(buf, i, 0);
|
|
/* terminate on the \n and skip past the it and done */
|
|
if((char)sldns_buffer_read_u8_at(buf, i) == '\n') {
|
|
sldns_buffer_write_u8_at(buf, i, 0);
|
|
sldns_buffer_set_position(buf, i+1);
|
|
return result;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/** move unread buffer to start and clear rest for putting the rest into it */
|
|
static void
|
|
http_moveover_buffer(sldns_buffer* buf)
|
|
{
|
|
size_t pos = sldns_buffer_position(buf);
|
|
size_t len = sldns_buffer_remaining(buf);
|
|
sldns_buffer_clear(buf);
|
|
memmove(sldns_buffer_begin(buf), sldns_buffer_at(buf, pos), len);
|
|
sldns_buffer_set_position(buf, len);
|
|
}
|
|
|
|
/** a http header is complete, process it */
|
|
static int
|
|
http_process_initial_header(struct comm_point* c)
|
|
{
|
|
char* line = http_header_line(c->buffer);
|
|
if(!line) return 1;
|
|
verbose(VERB_ALGO, "http header: %s", line);
|
|
if(strncasecmp(line, "HTTP/1.1 ", 9) == 0) {
|
|
/* check returncode */
|
|
if(line[9] != '2') {
|
|
verbose(VERB_ALGO, "http bad status %s", line+9);
|
|
return 0;
|
|
}
|
|
} else if(strncasecmp(line, "Content-Length: ", 16) == 0) {
|
|
if(!c->http_is_chunked)
|
|
c->tcp_byte_count = (size_t)atoi(line+16);
|
|
} else if(strncasecmp(line, "Transfer-Encoding: chunked", 19+7) == 0) {
|
|
c->tcp_byte_count = 0;
|
|
c->http_is_chunked = 1;
|
|
} else if(line[0] == 0) {
|
|
/* end of initial headers */
|
|
c->http_in_headers = 0;
|
|
if(c->http_is_chunked)
|
|
c->http_in_chunk_headers = 1;
|
|
/* remove header text from front of buffer
|
|
* the buffer is going to be used to return the data segment
|
|
* itself and we don't want the header to get returned
|
|
* prepended with it */
|
|
http_moveover_buffer(c->buffer);
|
|
sldns_buffer_flip(c->buffer);
|
|
return 1;
|
|
}
|
|
/* ignore other headers */
|
|
return 1;
|
|
}
|
|
|
|
/** a chunk header is complete, process it, return 0=fail, 1=continue next
|
|
* header line, 2=done with chunked transfer*/
|
|
static int
|
|
http_process_chunk_header(struct comm_point* c)
|
|
{
|
|
char* line = http_header_line(c->buffer);
|
|
if(!line) return 1;
|
|
if(c->http_in_chunk_headers == 3) {
|
|
verbose(VERB_ALGO, "http chunk trailer: %s", line);
|
|
/* are we done ? */
|
|
if(line[0] == 0 && c->tcp_byte_count == 0) {
|
|
/* callback of http reader when NETEVENT_DONE,
|
|
* end of data, with no data in buffer */
|
|
sldns_buffer_set_position(c->buffer, 0);
|
|
sldns_buffer_set_limit(c->buffer, 0);
|
|
fptr_ok(fptr_whitelist_comm_point(c->callback));
|
|
(void)(*c->callback)(c, c->cb_arg, NETEVENT_DONE, NULL);
|
|
/* return that we are done */
|
|
return 2;
|
|
}
|
|
if(line[0] == 0) {
|
|
/* continue with header of the next chunk */
|
|
c->http_in_chunk_headers = 1;
|
|
/* remove header text from front of buffer */
|
|
http_moveover_buffer(c->buffer);
|
|
sldns_buffer_flip(c->buffer);
|
|
return 1;
|
|
}
|
|
/* ignore further trail headers */
|
|
return 1;
|
|
}
|
|
verbose(VERB_ALGO, "http chunk header: %s", line);
|
|
if(c->http_in_chunk_headers == 1) {
|
|
/* read chunked start line */
|
|
char* end = NULL;
|
|
c->tcp_byte_count = (size_t)strtol(line, &end, 16);
|
|
if(end == line)
|
|
return 0;
|
|
c->http_in_chunk_headers = 0;
|
|
/* remove header text from front of buffer */
|
|
http_moveover_buffer(c->buffer);
|
|
sldns_buffer_flip(c->buffer);
|
|
if(c->tcp_byte_count == 0) {
|
|
/* done with chunks, process chunk_trailer lines */
|
|
c->http_in_chunk_headers = 3;
|
|
}
|
|
return 1;
|
|
}
|
|
/* ignore other headers */
|
|
return 1;
|
|
}
|
|
|
|
/** handle nonchunked data segment, 0=fail, 1=wait */
|
|
static int
|
|
http_nonchunk_segment(struct comm_point* c)
|
|
{
|
|
/* c->buffer at position..limit has new data we read in.
|
|
* the buffer itself is full of nonchunked data.
|
|
* we are looking to read tcp_byte_count more data
|
|
* and then the transfer is done. */
|
|
size_t remainbufferlen;
|
|
size_t got_now = sldns_buffer_limit(c->buffer);
|
|
if(c->tcp_byte_count <= got_now) {
|
|
/* done, this is the last data fragment */
|
|
c->http_stored = 0;
|
|
sldns_buffer_set_position(c->buffer, 0);
|
|
fptr_ok(fptr_whitelist_comm_point(c->callback));
|
|
(void)(*c->callback)(c, c->cb_arg, NETEVENT_DONE, NULL);
|
|
return 1;
|
|
}
|
|
/* if we have the buffer space,
|
|
* read more data collected into the buffer */
|
|
remainbufferlen = sldns_buffer_capacity(c->buffer) -
|
|
sldns_buffer_limit(c->buffer);
|
|
if(remainbufferlen+got_now >= c->tcp_byte_count ||
|
|
remainbufferlen >= (size_t)(c->ssl?16384:2048)) {
|
|
size_t total = sldns_buffer_limit(c->buffer);
|
|
sldns_buffer_clear(c->buffer);
|
|
sldns_buffer_set_position(c->buffer, total);
|
|
c->http_stored = total;
|
|
/* return and wait to read more */
|
|
return 1;
|
|
}
|
|
/* call callback with this data amount, then
|
|
* wait for more */
|
|
c->tcp_byte_count -= got_now;
|
|
c->http_stored = 0;
|
|
sldns_buffer_set_position(c->buffer, 0);
|
|
fptr_ok(fptr_whitelist_comm_point(c->callback));
|
|
(void)(*c->callback)(c, c->cb_arg, NETEVENT_NOERROR, NULL);
|
|
/* c->callback has to buffer_clear(c->buffer). */
|
|
/* return and wait to read more */
|
|
return 1;
|
|
}
|
|
|
|
/** handle chunked data segment, return 0=fail, 1=wait, 2=process more */
|
|
static int
|
|
http_chunked_segment(struct comm_point* c)
|
|
{
|
|
/* the c->buffer has from position..limit new data we read. */
|
|
/* the current chunk has length tcp_byte_count.
|
|
* once we read that read more chunk headers.
|
|
*/
|
|
size_t remainbufferlen;
|
|
size_t got_now = sldns_buffer_limit(c->buffer) - c->http_stored;
|
|
verbose(VERB_ALGO, "http_chunked_segment: got now %d, tcpbytcount %d, http_stored %d, buffer pos %d, buffer limit %d", (int)got_now, (int)c->tcp_byte_count, (int)c->http_stored, (int)sldns_buffer_position(c->buffer), (int)sldns_buffer_limit(c->buffer));
|
|
if(c->tcp_byte_count <= got_now) {
|
|
/* the chunk has completed (with perhaps some extra data
|
|
* from next chunk header and next chunk) */
|
|
/* save too much info into temp buffer */
|
|
size_t fraglen;
|
|
struct comm_reply repinfo;
|
|
c->http_stored = 0;
|
|
sldns_buffer_skip(c->buffer, (ssize_t)c->tcp_byte_count);
|
|
sldns_buffer_clear(c->http_temp);
|
|
sldns_buffer_write(c->http_temp,
|
|
sldns_buffer_current(c->buffer),
|
|
sldns_buffer_remaining(c->buffer));
|
|
sldns_buffer_flip(c->http_temp);
|
|
|
|
/* callback with this fragment */
|
|
fraglen = sldns_buffer_position(c->buffer);
|
|
sldns_buffer_set_position(c->buffer, 0);
|
|
sldns_buffer_set_limit(c->buffer, fraglen);
|
|
repinfo = c->repinfo;
|
|
fptr_ok(fptr_whitelist_comm_point(c->callback));
|
|
(void)(*c->callback)(c, c->cb_arg, NETEVENT_NOERROR, &repinfo);
|
|
/* c->callback has to buffer_clear(). */
|
|
|
|
/* is commpoint deleted? */
|
|
if(!repinfo.c) {
|
|
return 1;
|
|
}
|
|
/* copy waiting info */
|
|
sldns_buffer_clear(c->buffer);
|
|
sldns_buffer_write(c->buffer,
|
|
sldns_buffer_begin(c->http_temp),
|
|
sldns_buffer_remaining(c->http_temp));
|
|
sldns_buffer_flip(c->buffer);
|
|
/* process end of chunk trailer header lines, until
|
|
* an empty line */
|
|
c->http_in_chunk_headers = 3;
|
|
/* process more data in buffer (if any) */
|
|
return 2;
|
|
}
|
|
c->tcp_byte_count -= got_now;
|
|
|
|
/* if we have the buffer space,
|
|
* read more data collected into the buffer */
|
|
remainbufferlen = sldns_buffer_capacity(c->buffer) -
|
|
sldns_buffer_limit(c->buffer);
|
|
if(remainbufferlen >= c->tcp_byte_count ||
|
|
remainbufferlen >= 2048) {
|
|
size_t total = sldns_buffer_limit(c->buffer);
|
|
sldns_buffer_clear(c->buffer);
|
|
sldns_buffer_set_position(c->buffer, total);
|
|
c->http_stored = total;
|
|
/* return and wait to read more */
|
|
return 1;
|
|
}
|
|
|
|
/* callback of http reader for a new part of the data */
|
|
c->http_stored = 0;
|
|
sldns_buffer_set_position(c->buffer, 0);
|
|
fptr_ok(fptr_whitelist_comm_point(c->callback));
|
|
(void)(*c->callback)(c, c->cb_arg, NETEVENT_NOERROR, NULL);
|
|
/* c->callback has to buffer_clear(c->buffer). */
|
|
/* return and wait to read more */
|
|
return 1;
|
|
}
|
|
|
|
#ifdef HAVE_NGHTTP2
|
|
/** Create new http2 session. Called when creating handling comm point. */
|
|
static struct http2_session* http2_session_create(struct comm_point* c)
|
|
{
|
|
struct http2_session* session = calloc(1, sizeof(*session));
|
|
if(!session) {
|
|
log_err("malloc failure while creating http2 session");
|
|
return NULL;
|
|
}
|
|
session->c = c;
|
|
|
|
return session;
|
|
}
|
|
#endif
|
|
|
|
/** Delete http2 session. After closing connection or on error */
|
|
static void http2_session_delete(struct http2_session* h2_session)
|
|
{
|
|
#ifdef HAVE_NGHTTP2
|
|
if(h2_session->callbacks)
|
|
nghttp2_session_callbacks_del(h2_session->callbacks);
|
|
free(h2_session);
|
|
#else
|
|
(void)h2_session;
|
|
#endif
|
|
}
|
|
|
|
#ifdef HAVE_NGHTTP2
|
|
struct http2_stream* http2_stream_create(int32_t stream_id)
|
|
{
|
|
struct http2_stream* h2_stream = calloc(1, sizeof(*h2_stream));
|
|
if(!h2_stream) {
|
|
log_err("malloc failure while creating http2 stream");
|
|
return NULL;
|
|
}
|
|
h2_stream->stream_id = stream_id;
|
|
return h2_stream;
|
|
}
|
|
#endif
|
|
|
|
void http2_stream_add_meshstate(struct http2_stream* h2_stream,
|
|
struct mesh_area* mesh, struct mesh_state* m)
|
|
{
|
|
h2_stream->mesh = mesh;
|
|
h2_stream->mesh_state = m;
|
|
}
|
|
|
|
void http2_stream_remove_mesh_state(struct http2_stream* h2_stream)
|
|
{
|
|
if(!h2_stream)
|
|
return;
|
|
h2_stream->mesh_state = NULL;
|
|
}
|
|
|
|
#ifdef HAVE_NGHTTP2
|
|
void http2_session_add_stream(struct http2_session* h2_session,
|
|
struct http2_stream* h2_stream)
|
|
{
|
|
if(h2_session->first_stream)
|
|
h2_session->first_stream->prev = h2_stream;
|
|
h2_stream->next = h2_session->first_stream;
|
|
h2_session->first_stream = h2_stream;
|
|
}
|
|
|
|
/** remove stream from session linked list. After stream close callback or
|
|
* closing connection */
|
|
static void http2_session_remove_stream(struct http2_session* h2_session,
|
|
struct http2_stream* h2_stream)
|
|
{
|
|
if(h2_stream->prev)
|
|
h2_stream->prev->next = h2_stream->next;
|
|
else
|
|
h2_session->first_stream = h2_stream->next;
|
|
if(h2_stream->next)
|
|
h2_stream->next->prev = h2_stream->prev;
|
|
|
|
}
|
|
|
|
int http2_stream_close_cb(nghttp2_session* ATTR_UNUSED(session),
|
|
int32_t stream_id, uint32_t ATTR_UNUSED(error_code), void* cb_arg)
|
|
{
|
|
struct http2_stream* h2_stream;
|
|
struct http2_session* h2_session = (struct http2_session*)cb_arg;
|
|
if(!(h2_stream = nghttp2_session_get_stream_user_data(
|
|
h2_session->session, stream_id))) {
|
|
return 0;
|
|
}
|
|
http2_session_remove_stream(h2_session, h2_stream);
|
|
http2_stream_delete(h2_session, h2_stream);
|
|
return 0;
|
|
}
|
|
|
|
ssize_t http2_recv_cb(nghttp2_session* ATTR_UNUSED(session), uint8_t* buf,
|
|
size_t len, int ATTR_UNUSED(flags), void* cb_arg)
|
|
{
|
|
struct http2_session* h2_session = (struct http2_session*)cb_arg;
|
|
ssize_t ret;
|
|
|
|
log_assert(h2_session->c->type == comm_http);
|
|
log_assert(h2_session->c->h2_session);
|
|
if(++h2_session->reads_count > h2_session->c->http2_max_streams) {
|
|
/* We are somewhat arbitrarily capping the amount of
|
|
* consecutive reads on the HTTP2 session to the number of max
|
|
* allowed streams.
|
|
* When we reach the cap, error out with NGHTTP2_ERR_WOULDBLOCK
|
|
* to signal nghttp2_session_recv() to stop reading for now. */
|
|
h2_session->reads_count = 0;
|
|
return NGHTTP2_ERR_WOULDBLOCK;
|
|
}
|
|
|
|
#ifdef HAVE_SSL
|
|
if(h2_session->c->ssl) {
|
|
int r;
|
|
ERR_clear_error();
|
|
r = SSL_read(h2_session->c->ssl, buf, len);
|
|
if(r <= 0) {
|
|
int want = SSL_get_error(h2_session->c->ssl, r);
|
|
if(want == SSL_ERROR_ZERO_RETURN) {
|
|
return NGHTTP2_ERR_EOF;
|
|
} else if(want == SSL_ERROR_WANT_READ) {
|
|
return NGHTTP2_ERR_WOULDBLOCK;
|
|
} else if(want == SSL_ERROR_WANT_WRITE) {
|
|
h2_session->c->ssl_shake_state = comm_ssl_shake_hs_write;
|
|
comm_point_listen_for_rw(h2_session->c, 0, 1);
|
|
return NGHTTP2_ERR_WOULDBLOCK;
|
|
} else if(want == SSL_ERROR_SYSCALL) {
|
|
#ifdef ECONNRESET
|
|
if(errno == ECONNRESET && verbosity < 2)
|
|
return NGHTTP2_ERR_CALLBACK_FAILURE;
|
|
#endif
|
|
if(errno != 0)
|
|
log_err("SSL_read syscall: %s",
|
|
strerror(errno));
|
|
return NGHTTP2_ERR_CALLBACK_FAILURE;
|
|
}
|
|
log_crypto_err_io("could not SSL_read", want);
|
|
return NGHTTP2_ERR_CALLBACK_FAILURE;
|
|
}
|
|
return r;
|
|
}
|
|
#endif /* HAVE_SSL */
|
|
|
|
ret = recv(h2_session->c->fd, (void*)buf, len, MSG_DONTWAIT);
|
|
if(ret == 0) {
|
|
return NGHTTP2_ERR_EOF;
|
|
} else if(ret < 0) {
|
|
#ifndef USE_WINSOCK
|
|
if(errno == EINTR || errno == EAGAIN)
|
|
return NGHTTP2_ERR_WOULDBLOCK;
|
|
#ifdef ECONNRESET
|
|
if(errno == ECONNRESET && verbosity < 2)
|
|
return NGHTTP2_ERR_CALLBACK_FAILURE;
|
|
#endif
|
|
log_err_addr("could not http2 recv: %s", strerror(errno),
|
|
&h2_session->c->repinfo.remote_addr,
|
|
h2_session->c->repinfo.remote_addrlen);
|
|
#else /* USE_WINSOCK */
|
|
if(WSAGetLastError() == WSAECONNRESET)
|
|
return NGHTTP2_ERR_CALLBACK_FAILURE;
|
|
if(WSAGetLastError() == WSAEINPROGRESS)
|
|
return NGHTTP2_ERR_WOULDBLOCK;
|
|
if(WSAGetLastError() == WSAEWOULDBLOCK) {
|
|
ub_winsock_tcp_wouldblock(h2_session->c->ev->ev,
|
|
UB_EV_READ);
|
|
return NGHTTP2_ERR_WOULDBLOCK;
|
|
}
|
|
log_err_addr("could not http2 recv: %s",
|
|
wsa_strerror(WSAGetLastError()),
|
|
&h2_session->c->repinfo.remote_addr,
|
|
h2_session->c->repinfo.remote_addrlen);
|
|
#endif
|
|
return NGHTTP2_ERR_CALLBACK_FAILURE;
|
|
}
|
|
return ret;
|
|
}
|
|
#endif /* HAVE_NGHTTP2 */
|
|
|
|
/** Handle http2 read */
|
|
static int
|
|
comm_point_http2_handle_read(int ATTR_UNUSED(fd), struct comm_point* c)
|
|
{
|
|
#ifdef HAVE_NGHTTP2
|
|
int ret;
|
|
log_assert(c->h2_session);
|
|
|
|
/* reading until recv cb returns NGHTTP2_ERR_WOULDBLOCK */
|
|
ret = nghttp2_session_recv(c->h2_session->session);
|
|
if(ret) {
|
|
if(ret != NGHTTP2_ERR_EOF &&
|
|
ret != NGHTTP2_ERR_CALLBACK_FAILURE) {
|
|
char a[256];
|
|
addr_to_str(&c->repinfo.remote_addr,
|
|
c->repinfo.remote_addrlen, a, sizeof(a));
|
|
verbose(VERB_QUERY, "http2: session_recv from %s failed, "
|
|
"error: %s", a, nghttp2_strerror(ret));
|
|
}
|
|
return 0;
|
|
}
|
|
if(nghttp2_session_want_write(c->h2_session->session)) {
|
|
c->tcp_is_reading = 0;
|
|
comm_point_stop_listening(c);
|
|
comm_point_start_listening(c, -1, adjusted_tcp_timeout(c));
|
|
} else if(!nghttp2_session_want_read(c->h2_session->session))
|
|
return 0; /* connection can be closed */
|
|
return 1;
|
|
#else
|
|
(void)c;
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Handle http reading callback.
|
|
* @param fd: file descriptor of socket.
|
|
* @param c: comm point to read from into buffer.
|
|
* @return: 0 on error
|
|
*/
|
|
static int
|
|
comm_point_http_handle_read(int fd, struct comm_point* c)
|
|
{
|
|
log_assert(c->type == comm_http);
|
|
log_assert(fd != -1);
|
|
|
|
/* if we are in ssl handshake, handle SSL handshake */
|
|
#ifdef HAVE_SSL
|
|
if(c->ssl && c->ssl_shake_state != comm_ssl_shake_none) {
|
|
if(!ssl_handshake(c))
|
|
return 0;
|
|
if(c->ssl_shake_state != comm_ssl_shake_none)
|
|
return 1;
|
|
}
|
|
#endif /* HAVE_SSL */
|
|
|
|
if(!c->tcp_is_reading)
|
|
return 1;
|
|
|
|
if(c->use_h2) {
|
|
return comm_point_http2_handle_read(fd, c);
|
|
}
|
|
|
|
/* http version is <= http/1.1 */
|
|
|
|
if(c->http_min_version >= http_version_2) {
|
|
/* HTTP/2 failed, not allowed to use lower version. */
|
|
return 0;
|
|
}
|
|
|
|
/* read more data */
|
|
if(c->ssl) {
|
|
if(!ssl_http_read_more(c))
|
|
return 0;
|
|
} else {
|
|
if(!http_read_more(fd, c))
|
|
return 0;
|
|
}
|
|
|
|
if(c->http_stored >= sldns_buffer_position(c->buffer)) {
|
|
/* read did not work but we wanted more data, there is
|
|
* no bytes to process now. */
|
|
return 1;
|
|
}
|
|
sldns_buffer_flip(c->buffer);
|
|
/* if we are partway in a segment of data, position us at the point
|
|
* where we left off previously */
|
|
if(c->http_stored < sldns_buffer_limit(c->buffer))
|
|
sldns_buffer_set_position(c->buffer, c->http_stored);
|
|
else sldns_buffer_set_position(c->buffer, sldns_buffer_limit(c->buffer));
|
|
|
|
while(sldns_buffer_remaining(c->buffer) > 0) {
|
|
/* Handle HTTP/1.x data */
|
|
/* if we are reading headers, read more headers */
|
|
if(c->http_in_headers || c->http_in_chunk_headers) {
|
|
/* if header is done, process the header */
|
|
if(!http_header_done(c->buffer)) {
|
|
/* copy remaining data to front of buffer
|
|
* and set rest for writing into it */
|
|
http_moveover_buffer(c->buffer);
|
|
/* return and wait to read more */
|
|
return 1;
|
|
}
|
|
if(!c->http_in_chunk_headers) {
|
|
/* process initial headers */
|
|
if(!http_process_initial_header(c))
|
|
return 0;
|
|
} else {
|
|
/* process chunk headers */
|
|
int r = http_process_chunk_header(c);
|
|
if(r == 0) return 0;
|
|
if(r == 2) return 1; /* done */
|
|
/* r == 1, continue */
|
|
}
|
|
/* see if we have more to process */
|
|
continue;
|
|
}
|
|
|
|
if(!c->http_is_chunked) {
|
|
/* if we are reading nonchunks, process that*/
|
|
return http_nonchunk_segment(c);
|
|
} else {
|
|
/* if we are reading chunks, read the chunk */
|
|
int r = http_chunked_segment(c);
|
|
if(r == 0) return 0;
|
|
if(r == 1) return 1;
|
|
continue;
|
|
}
|
|
}
|
|
/* broke out of the loop; could not process header instead need
|
|
* to read more */
|
|
/* moveover any remaining data and read more data */
|
|
http_moveover_buffer(c->buffer);
|
|
/* return and wait to read more */
|
|
return 1;
|
|
}
|
|
|
|
/** check pending connect for http */
|
|
static int
|
|
http_check_connect(int fd, struct comm_point* c)
|
|
{
|
|
/* check for pending error from nonblocking connect */
|
|
/* from Stevens, unix network programming, vol1, 3rd ed, p450*/
|
|
int error = 0;
|
|
socklen_t len = (socklen_t)sizeof(error);
|
|
if(getsockopt(fd, SOL_SOCKET, SO_ERROR, (void*)&error,
|
|
&len) < 0){
|
|
#ifndef USE_WINSOCK
|
|
error = errno; /* on solaris errno is error */
|
|
#else /* USE_WINSOCK */
|
|
error = WSAGetLastError();
|
|
#endif
|
|
}
|
|
#ifndef USE_WINSOCK
|
|
#if defined(EINPROGRESS) && defined(EWOULDBLOCK)
|
|
if(error == EINPROGRESS || error == EWOULDBLOCK)
|
|
return 1; /* try again later */
|
|
else
|
|
#endif
|
|
if(error != 0 && verbosity < 2)
|
|
return 0; /* silence lots of chatter in the logs */
|
|
else if(error != 0) {
|
|
log_err_addr("http connect", strerror(error),
|
|
&c->repinfo.remote_addr, c->repinfo.remote_addrlen);
|
|
#else /* USE_WINSOCK */
|
|
/* examine error */
|
|
if(error == WSAEINPROGRESS)
|
|
return 1;
|
|
else if(error == WSAEWOULDBLOCK) {
|
|
ub_winsock_tcp_wouldblock(c->ev->ev, UB_EV_WRITE);
|
|
return 1;
|
|
} else if(error != 0 && verbosity < 2)
|
|
return 0;
|
|
else if(error != 0) {
|
|
log_err_addr("http connect", wsa_strerror(error),
|
|
&c->repinfo.remote_addr, c->repinfo.remote_addrlen);
|
|
#endif /* USE_WINSOCK */
|
|
return 0;
|
|
}
|
|
/* keep on processing this socket */
|
|
return 2;
|
|
}
|
|
|
|
/** write more data for http (with ssl) */
|
|
static int
|
|
ssl_http_write_more(struct comm_point* c)
|
|
{
|
|
#ifdef HAVE_SSL
|
|
int r;
|
|
log_assert(sldns_buffer_remaining(c->buffer) > 0);
|
|
ERR_clear_error();
|
|
r = SSL_write(c->ssl, (void*)sldns_buffer_current(c->buffer),
|
|
(int)sldns_buffer_remaining(c->buffer));
|
|
if(r <= 0) {
|
|
int want = SSL_get_error(c->ssl, r);
|
|
if(want == SSL_ERROR_ZERO_RETURN) {
|
|
return 0; /* closed */
|
|
} else if(want == SSL_ERROR_WANT_READ) {
|
|
c->ssl_shake_state = comm_ssl_shake_hs_read;
|
|
comm_point_listen_for_rw(c, 1, 0);
|
|
return 1; /* wait for read condition */
|
|
} else if(want == SSL_ERROR_WANT_WRITE) {
|
|
return 1; /* write more later */
|
|
} else if(want == SSL_ERROR_SYSCALL) {
|
|
#ifdef EPIPE
|
|
if(errno == EPIPE && verbosity < 2)
|
|
return 0; /* silence 'broken pipe' */
|
|
#endif
|
|
if(errno != 0)
|
|
log_err("SSL_write syscall: %s",
|
|
strerror(errno));
|
|
return 0;
|
|
}
|
|
log_crypto_err_io("could not SSL_write", want);
|
|
return 0;
|
|
}
|
|
sldns_buffer_skip(c->buffer, (ssize_t)r);
|
|
return 1;
|
|
#else
|
|
(void)c;
|
|
return 0;
|
|
#endif /* HAVE_SSL */
|
|
}
|
|
|
|
/** write more data for http */
|
|
static int
|
|
http_write_more(int fd, struct comm_point* c)
|
|
{
|
|
ssize_t r;
|
|
log_assert(sldns_buffer_remaining(c->buffer) > 0);
|
|
r = send(fd, (void*)sldns_buffer_current(c->buffer),
|
|
sldns_buffer_remaining(c->buffer), 0);
|
|
if(r == -1) {
|
|
#ifndef USE_WINSOCK
|
|
if(errno == EINTR || errno == EAGAIN)
|
|
return 1;
|
|
#else
|
|
if(WSAGetLastError() == WSAEINPROGRESS)
|
|
return 1;
|
|
if(WSAGetLastError() == WSAEWOULDBLOCK) {
|
|
ub_winsock_tcp_wouldblock(c->ev->ev, UB_EV_WRITE);
|
|
return 1;
|
|
}
|
|
#endif
|
|
log_err_addr("http send r", sock_strerror(errno),
|
|
&c->repinfo.remote_addr, c->repinfo.remote_addrlen);
|
|
return 0;
|
|
}
|
|
sldns_buffer_skip(c->buffer, r);
|
|
return 1;
|
|
}
|
|
|
|
#ifdef HAVE_NGHTTP2
|
|
ssize_t http2_send_cb(nghttp2_session* ATTR_UNUSED(session), const uint8_t* buf,
|
|
size_t len, int ATTR_UNUSED(flags), void* cb_arg)
|
|
{
|
|
ssize_t ret;
|
|
struct http2_session* h2_session = (struct http2_session*)cb_arg;
|
|
log_assert(h2_session->c->type == comm_http);
|
|
log_assert(h2_session->c->h2_session);
|
|
|
|
#ifdef HAVE_SSL
|
|
if(h2_session->c->ssl) {
|
|
int r;
|
|
ERR_clear_error();
|
|
r = SSL_write(h2_session->c->ssl, buf, len);
|
|
if(r <= 0) {
|
|
int want = SSL_get_error(h2_session->c->ssl, r);
|
|
if(want == SSL_ERROR_ZERO_RETURN) {
|
|
return NGHTTP2_ERR_CALLBACK_FAILURE;
|
|
} else if(want == SSL_ERROR_WANT_READ) {
|
|
h2_session->c->ssl_shake_state = comm_ssl_shake_hs_read;
|
|
comm_point_listen_for_rw(h2_session->c, 1, 0);
|
|
return NGHTTP2_ERR_WOULDBLOCK;
|
|
} else if(want == SSL_ERROR_WANT_WRITE) {
|
|
return NGHTTP2_ERR_WOULDBLOCK;
|
|
} else if(want == SSL_ERROR_SYSCALL) {
|
|
#ifdef EPIPE
|
|
if(errno == EPIPE && verbosity < 2)
|
|
return NGHTTP2_ERR_CALLBACK_FAILURE;
|
|
#endif
|
|
if(errno != 0)
|
|
log_err("SSL_write syscall: %s",
|
|
strerror(errno));
|
|
return NGHTTP2_ERR_CALLBACK_FAILURE;
|
|
}
|
|
log_crypto_err_io("could not SSL_write", want);
|
|
return NGHTTP2_ERR_CALLBACK_FAILURE;
|
|
}
|
|
return r;
|
|
}
|
|
#endif /* HAVE_SSL */
|
|
|
|
ret = send(h2_session->c->fd, (void*)buf, len, 0);
|
|
if(ret == 0) {
|
|
return NGHTTP2_ERR_CALLBACK_FAILURE;
|
|
} else if(ret < 0) {
|
|
#ifndef USE_WINSOCK
|
|
if(errno == EINTR || errno == EAGAIN)
|
|
return NGHTTP2_ERR_WOULDBLOCK;
|
|
#ifdef EPIPE
|
|
if(errno == EPIPE && verbosity < 2)
|
|
return NGHTTP2_ERR_CALLBACK_FAILURE;
|
|
#endif
|
|
#ifdef ECONNRESET
|
|
if(errno == ECONNRESET && verbosity < 2)
|
|
return NGHTTP2_ERR_CALLBACK_FAILURE;
|
|
#endif
|
|
log_err_addr("could not http2 write: %s", strerror(errno),
|
|
&h2_session->c->repinfo.remote_addr,
|
|
h2_session->c->repinfo.remote_addrlen);
|
|
#else /* USE_WINSOCK */
|
|
if(WSAGetLastError() == WSAENOTCONN)
|
|
return NGHTTP2_ERR_WOULDBLOCK;
|
|
if(WSAGetLastError() == WSAEINPROGRESS)
|
|
return NGHTTP2_ERR_WOULDBLOCK;
|
|
if(WSAGetLastError() == WSAEWOULDBLOCK) {
|
|
ub_winsock_tcp_wouldblock(h2_session->c->ev->ev,
|
|
UB_EV_WRITE);
|
|
return NGHTTP2_ERR_WOULDBLOCK;
|
|
}
|
|
if(WSAGetLastError() == WSAECONNRESET && verbosity < 2)
|
|
return NGHTTP2_ERR_CALLBACK_FAILURE;
|
|
log_err_addr("could not http2 write: %s",
|
|
wsa_strerror(WSAGetLastError()),
|
|
&h2_session->c->repinfo.remote_addr,
|
|
h2_session->c->repinfo.remote_addrlen);
|
|
#endif
|
|
return NGHTTP2_ERR_CALLBACK_FAILURE;
|
|
}
|
|
return ret;
|
|
}
|
|
#endif /* HAVE_NGHTTP2 */
|
|
|
|
/** Handle http2 writing */
|
|
static int
|
|
comm_point_http2_handle_write(int ATTR_UNUSED(fd), struct comm_point* c)
|
|
{
|
|
#ifdef HAVE_NGHTTP2
|
|
int ret;
|
|
log_assert(c->h2_session);
|
|
|
|
ret = nghttp2_session_send(c->h2_session->session);
|
|
if(ret) {
|
|
verbose(VERB_QUERY, "http2: session_send failed, "
|
|
"error: %s", nghttp2_strerror(ret));
|
|
return 0;
|
|
}
|
|
|
|
if(nghttp2_session_want_read(c->h2_session->session)) {
|
|
c->tcp_is_reading = 1;
|
|
comm_point_stop_listening(c);
|
|
comm_point_start_listening(c, -1, adjusted_tcp_timeout(c));
|
|
} else if(!nghttp2_session_want_write(c->h2_session->session))
|
|
return 0; /* connection can be closed */
|
|
return 1;
|
|
#else
|
|
(void)c;
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Handle http writing callback.
|
|
* @param fd: file descriptor of socket.
|
|
* @param c: comm point to write buffer out of.
|
|
* @return: 0 on error
|
|
*/
|
|
static int
|
|
comm_point_http_handle_write(int fd, struct comm_point* c)
|
|
{
|
|
log_assert(c->type == comm_http);
|
|
log_assert(fd != -1);
|
|
|
|
/* check pending connect errors, if that fails, we wait for more,
|
|
* or we can continue to write contents */
|
|
if(c->tcp_check_nb_connect) {
|
|
int r = http_check_connect(fd, c);
|
|
if(r == 0) return 0;
|
|
if(r == 1) return 1;
|
|
c->tcp_check_nb_connect = 0;
|
|
}
|
|
/* if we are in ssl handshake, handle SSL handshake */
|
|
#ifdef HAVE_SSL
|
|
if(c->ssl && c->ssl_shake_state != comm_ssl_shake_none) {
|
|
if(!ssl_handshake(c))
|
|
return 0;
|
|
if(c->ssl_shake_state != comm_ssl_shake_none)
|
|
return 1;
|
|
}
|
|
#endif /* HAVE_SSL */
|
|
if(c->tcp_is_reading)
|
|
return 1;
|
|
|
|
if(c->use_h2) {
|
|
return comm_point_http2_handle_write(fd, c);
|
|
}
|
|
|
|
/* http version is <= http/1.1 */
|
|
|
|
if(c->http_min_version >= http_version_2) {
|
|
/* HTTP/2 failed, not allowed to use lower version. */
|
|
return 0;
|
|
}
|
|
|
|
/* if we are writing, write more */
|
|
if(c->ssl) {
|
|
if(!ssl_http_write_more(c))
|
|
return 0;
|
|
} else {
|
|
if(!http_write_more(fd, c))
|
|
return 0;
|
|
}
|
|
|
|
/* we write a single buffer contents, that can contain
|
|
* the http request, and then flip to read the results */
|
|
/* see if write is done */
|
|
if(sldns_buffer_remaining(c->buffer) == 0) {
|
|
sldns_buffer_clear(c->buffer);
|
|
if(c->tcp_do_toggle_rw)
|
|
c->tcp_is_reading = 1;
|
|
c->tcp_byte_count = 0;
|
|
/* switch from listening(write) to listening(read) */
|
|
comm_point_stop_listening(c);
|
|
comm_point_start_listening(c, -1, -1);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
void
|
|
comm_point_http_handle_callback(int fd, short event, void* arg)
|
|
{
|
|
struct comm_point* c = (struct comm_point*)arg;
|
|
log_assert(c->type == comm_http);
|
|
ub_comm_base_now(c->ev->base);
|
|
|
|
if((event&UB_EV_TIMEOUT)) {
|
|
verbose(VERB_QUERY, "http took too long, dropped");
|
|
reclaim_http_handler(c);
|
|
if(!c->tcp_do_close) {
|
|
fptr_ok(fptr_whitelist_comm_point(c->callback));
|
|
(void)(*c->callback)(c, c->cb_arg,
|
|
NETEVENT_TIMEOUT, NULL);
|
|
}
|
|
return;
|
|
}
|
|
if((event&UB_EV_READ)) {
|
|
if(!comm_point_http_handle_read(fd, c)) {
|
|
reclaim_http_handler(c);
|
|
if(!c->tcp_do_close) {
|
|
fptr_ok(fptr_whitelist_comm_point(
|
|
c->callback));
|
|
(void)(*c->callback)(c, c->cb_arg,
|
|
NETEVENT_CLOSED, NULL);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
if((event&UB_EV_WRITE)) {
|
|
if(!comm_point_http_handle_write(fd, c)) {
|
|
reclaim_http_handler(c);
|
|
if(!c->tcp_do_close) {
|
|
fptr_ok(fptr_whitelist_comm_point(
|
|
c->callback));
|
|
(void)(*c->callback)(c, c->cb_arg,
|
|
NETEVENT_CLOSED, NULL);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
log_err("Ignored event %d for httphdl.", event);
|
|
}
|
|
|
|
void comm_point_local_handle_callback(int fd, short event, void* arg)
|
|
{
|
|
struct comm_point* c = (struct comm_point*)arg;
|
|
log_assert(c->type == comm_local);
|
|
ub_comm_base_now(c->ev->base);
|
|
|
|
if((event&UB_EV_READ)) {
|
|
if(!comm_point_tcp_handle_read(fd, c, 1)) {
|
|
fptr_ok(fptr_whitelist_comm_point(c->callback));
|
|
(void)(*c->callback)(c, c->cb_arg, NETEVENT_CLOSED,
|
|
NULL);
|
|
}
|
|
return;
|
|
}
|
|
log_err("Ignored event %d for localhdl.", event);
|
|
}
|
|
|
|
void comm_point_raw_handle_callback(int ATTR_UNUSED(fd),
|
|
short event, void* arg)
|
|
{
|
|
struct comm_point* c = (struct comm_point*)arg;
|
|
int err = NETEVENT_NOERROR;
|
|
log_assert(c->type == comm_raw);
|
|
ub_comm_base_now(c->ev->base);
|
|
|
|
if((event&UB_EV_TIMEOUT))
|
|
err = NETEVENT_TIMEOUT;
|
|
fptr_ok(fptr_whitelist_comm_point_raw(c->callback));
|
|
(void)(*c->callback)(c, c->cb_arg, err, NULL);
|
|
}
|
|
|
|
struct comm_point*
|
|
comm_point_create_udp(struct comm_base *base, int fd, sldns_buffer* buffer,
|
|
int pp2_enabled, comm_point_callback_type* callback,
|
|
void* callback_arg, struct unbound_socket* socket)
|
|
{
|
|
struct comm_point* c = (struct comm_point*)calloc(1,
|
|
sizeof(struct comm_point));
|
|
short evbits;
|
|
if(!c)
|
|
return NULL;
|
|
c->ev = (struct internal_event*)calloc(1,
|
|
sizeof(struct internal_event));
|
|
if(!c->ev) {
|
|
free(c);
|
|
return NULL;
|
|
}
|
|
c->ev->base = base;
|
|
c->fd = fd;
|
|
c->buffer = buffer;
|
|
c->timeout = NULL;
|
|
c->tcp_is_reading = 0;
|
|
c->tcp_byte_count = 0;
|
|
c->tcp_parent = NULL;
|
|
c->max_tcp_count = 0;
|
|
c->cur_tcp_count = 0;
|
|
c->tcp_handlers = NULL;
|
|
c->tcp_free = NULL;
|
|
c->is_in_tcp_free = 0;
|
|
c->type = comm_udp;
|
|
c->tcp_do_close = 0;
|
|
c->do_not_close = 0;
|
|
c->tcp_do_toggle_rw = 0;
|
|
c->tcp_check_nb_connect = 0;
|
|
#ifdef USE_MSG_FASTOPEN
|
|
c->tcp_do_fastopen = 0;
|
|
#endif
|
|
#ifdef USE_DNSCRYPT
|
|
c->dnscrypt = 0;
|
|
c->dnscrypt_buffer = buffer;
|
|
#endif
|
|
c->inuse = 0;
|
|
c->callback = callback;
|
|
c->cb_arg = callback_arg;
|
|
c->socket = socket;
|
|
c->pp2_enabled = pp2_enabled;
|
|
c->pp2_header_state = pp2_header_none;
|
|
evbits = UB_EV_READ | UB_EV_PERSIST;
|
|
/* ub_event stuff */
|
|
c->ev->ev = ub_event_new(base->eb->base, c->fd, evbits,
|
|
comm_point_udp_callback, c);
|
|
if(c->ev->ev == NULL) {
|
|
log_err("could not baseset udp event");
|
|
comm_point_delete(c);
|
|
return NULL;
|
|
}
|
|
if(fd!=-1 && ub_event_add(c->ev->ev, c->timeout) != 0 ) {
|
|
log_err("could not add udp event");
|
|
comm_point_delete(c);
|
|
return NULL;
|
|
}
|
|
c->event_added = 1;
|
|
return c;
|
|
}
|
|
|
|
#if defined(AF_INET6) && defined(IPV6_PKTINFO) && defined(HAVE_RECVMSG)
|
|
struct comm_point*
|
|
comm_point_create_udp_ancil(struct comm_base *base, int fd,
|
|
sldns_buffer* buffer, int pp2_enabled,
|
|
comm_point_callback_type* callback, void* callback_arg, struct unbound_socket* socket)
|
|
{
|
|
struct comm_point* c = (struct comm_point*)calloc(1,
|
|
sizeof(struct comm_point));
|
|
short evbits;
|
|
if(!c)
|
|
return NULL;
|
|
c->ev = (struct internal_event*)calloc(1,
|
|
sizeof(struct internal_event));
|
|
if(!c->ev) {
|
|
free(c);
|
|
return NULL;
|
|
}
|
|
c->ev->base = base;
|
|
c->fd = fd;
|
|
c->buffer = buffer;
|
|
c->timeout = NULL;
|
|
c->tcp_is_reading = 0;
|
|
c->tcp_byte_count = 0;
|
|
c->tcp_parent = NULL;
|
|
c->max_tcp_count = 0;
|
|
c->cur_tcp_count = 0;
|
|
c->tcp_handlers = NULL;
|
|
c->tcp_free = NULL;
|
|
c->is_in_tcp_free = 0;
|
|
c->type = comm_udp;
|
|
c->tcp_do_close = 0;
|
|
c->do_not_close = 0;
|
|
#ifdef USE_DNSCRYPT
|
|
c->dnscrypt = 0;
|
|
c->dnscrypt_buffer = buffer;
|
|
#endif
|
|
c->inuse = 0;
|
|
c->tcp_do_toggle_rw = 0;
|
|
c->tcp_check_nb_connect = 0;
|
|
#ifdef USE_MSG_FASTOPEN
|
|
c->tcp_do_fastopen = 0;
|
|
#endif
|
|
c->callback = callback;
|
|
c->cb_arg = callback_arg;
|
|
c->socket = socket;
|
|
c->pp2_enabled = pp2_enabled;
|
|
c->pp2_header_state = pp2_header_none;
|
|
evbits = UB_EV_READ | UB_EV_PERSIST;
|
|
/* ub_event stuff */
|
|
c->ev->ev = ub_event_new(base->eb->base, c->fd, evbits,
|
|
comm_point_udp_ancil_callback, c);
|
|
if(c->ev->ev == NULL) {
|
|
log_err("could not baseset udp event");
|
|
comm_point_delete(c);
|
|
return NULL;
|
|
}
|
|
if(fd!=-1 && ub_event_add(c->ev->ev, c->timeout) != 0 ) {
|
|
log_err("could not add udp event");
|
|
comm_point_delete(c);
|
|
return NULL;
|
|
}
|
|
c->event_added = 1;
|
|
return c;
|
|
}
|
|
#endif
|
|
|
|
struct comm_point*
|
|
comm_point_create_doq(struct comm_base *base, int fd, sldns_buffer* buffer,
|
|
comm_point_callback_type* callback, void* callback_arg,
|
|
struct unbound_socket* socket, struct doq_table* table,
|
|
struct ub_randstate* rnd, const void* quic_sslctx,
|
|
struct config_file* cfg)
|
|
{
|
|
#ifdef HAVE_NGTCP2
|
|
struct comm_point* c = (struct comm_point*)calloc(1,
|
|
sizeof(struct comm_point));
|
|
short evbits;
|
|
if(!c)
|
|
return NULL;
|
|
c->ev = (struct internal_event*)calloc(1,
|
|
sizeof(struct internal_event));
|
|
if(!c->ev) {
|
|
free(c);
|
|
return NULL;
|
|
}
|
|
c->ev->base = base;
|
|
c->fd = fd;
|
|
c->buffer = buffer;
|
|
c->timeout = NULL;
|
|
c->tcp_is_reading = 0;
|
|
c->tcp_byte_count = 0;
|
|
c->tcp_parent = NULL;
|
|
c->max_tcp_count = 0;
|
|
c->cur_tcp_count = 0;
|
|
c->tcp_handlers = NULL;
|
|
c->tcp_free = NULL;
|
|
c->is_in_tcp_free = 0;
|
|
c->type = comm_doq;
|
|
c->tcp_do_close = 0;
|
|
c->do_not_close = 0;
|
|
c->tcp_do_toggle_rw = 0;
|
|
c->tcp_check_nb_connect = 0;
|
|
#ifdef USE_MSG_FASTOPEN
|
|
c->tcp_do_fastopen = 0;
|
|
#endif
|
|
#ifdef USE_DNSCRYPT
|
|
c->dnscrypt = 0;
|
|
c->dnscrypt_buffer = NULL;
|
|
#endif
|
|
c->doq_socket = doq_server_socket_create(table, rnd, quic_sslctx, c,
|
|
base, cfg);
|
|
if(!c->doq_socket) {
|
|
log_err("could not create doq comm_point");
|
|
comm_point_delete(c);
|
|
return NULL;
|
|
}
|
|
c->inuse = 0;
|
|
c->callback = callback;
|
|
c->cb_arg = callback_arg;
|
|
c->socket = socket;
|
|
c->pp2_enabled = 0;
|
|
c->pp2_header_state = pp2_header_none;
|
|
evbits = UB_EV_READ | UB_EV_PERSIST;
|
|
/* ub_event stuff */
|
|
c->ev->ev = ub_event_new(base->eb->base, c->fd, evbits,
|
|
comm_point_doq_callback, c);
|
|
if(c->ev->ev == NULL) {
|
|
log_err("could not baseset udp event");
|
|
comm_point_delete(c);
|
|
return NULL;
|
|
}
|
|
if(fd!=-1 && ub_event_add(c->ev->ev, c->timeout) != 0 ) {
|
|
log_err("could not add udp event");
|
|
comm_point_delete(c);
|
|
return NULL;
|
|
}
|
|
c->event_added = 1;
|
|
return c;
|
|
#else
|
|
/* no libngtcp2, so no QUIC support */
|
|
(void)base;
|
|
(void)buffer;
|
|
(void)callback;
|
|
(void)callback_arg;
|
|
(void)socket;
|
|
(void)rnd;
|
|
(void)table;
|
|
(void)quic_sslctx;
|
|
(void)cfg;
|
|
sock_close(fd);
|
|
return NULL;
|
|
#endif /* HAVE_NGTCP2 */
|
|
}
|
|
|
|
static struct comm_point*
|
|
comm_point_create_tcp_handler(struct comm_base *base,
|
|
struct comm_point* parent, size_t bufsize,
|
|
struct sldns_buffer* spoolbuf, comm_point_callback_type* callback,
|
|
void* callback_arg, struct unbound_socket* socket)
|
|
{
|
|
struct comm_point* c = (struct comm_point*)calloc(1,
|
|
sizeof(struct comm_point));
|
|
short evbits;
|
|
if(!c)
|
|
return NULL;
|
|
c->ev = (struct internal_event*)calloc(1,
|
|
sizeof(struct internal_event));
|
|
if(!c->ev) {
|
|
free(c);
|
|
return NULL;
|
|
}
|
|
c->ev->base = base;
|
|
c->fd = -1;
|
|
c->buffer = sldns_buffer_new(bufsize);
|
|
if(!c->buffer) {
|
|
free(c->ev);
|
|
free(c);
|
|
return NULL;
|
|
}
|
|
c->timeout = (struct timeval*)malloc(sizeof(struct timeval));
|
|
if(!c->timeout) {
|
|
sldns_buffer_free(c->buffer);
|
|
free(c->ev);
|
|
free(c);
|
|
return NULL;
|
|
}
|
|
c->tcp_is_reading = 0;
|
|
c->tcp_byte_count = 0;
|
|
c->tcp_parent = parent;
|
|
c->tcp_timeout_msec = parent->tcp_timeout_msec;
|
|
c->tcp_conn_limit = parent->tcp_conn_limit;
|
|
c->tcl_addr = NULL;
|
|
c->tcp_keepalive = 0;
|
|
c->max_tcp_count = 0;
|
|
c->cur_tcp_count = 0;
|
|
c->tcp_handlers = NULL;
|
|
c->tcp_free = NULL;
|
|
c->is_in_tcp_free = 0;
|
|
c->type = comm_tcp;
|
|
c->tcp_do_close = 0;
|
|
c->do_not_close = 0;
|
|
c->tcp_do_toggle_rw = 1;
|
|
c->tcp_check_nb_connect = 0;
|
|
#ifdef USE_MSG_FASTOPEN
|
|
c->tcp_do_fastopen = 0;
|
|
#endif
|
|
#ifdef USE_DNSCRYPT
|
|
c->dnscrypt = 0;
|
|
/* We don't know just yet if this is a dnscrypt channel. Allocation
|
|
* will be done when handling the callback. */
|
|
c->dnscrypt_buffer = c->buffer;
|
|
#endif
|
|
c->repinfo.c = c;
|
|
c->callback = callback;
|
|
c->cb_arg = callback_arg;
|
|
c->socket = socket;
|
|
c->pp2_enabled = parent->pp2_enabled;
|
|
c->pp2_header_state = pp2_header_none;
|
|
if(spoolbuf) {
|
|
c->tcp_req_info = tcp_req_info_create(spoolbuf);
|
|
if(!c->tcp_req_info) {
|
|
log_err("could not create tcp commpoint");
|
|
sldns_buffer_free(c->buffer);
|
|
free(c->timeout);
|
|
free(c->ev);
|
|
free(c);
|
|
return NULL;
|
|
}
|
|
c->tcp_req_info->cp = c;
|
|
c->tcp_do_close = 1;
|
|
c->tcp_do_toggle_rw = 0;
|
|
}
|
|
/* add to parent free list */
|
|
c->tcp_free = parent->tcp_free;
|
|
parent->tcp_free = c;
|
|
c->is_in_tcp_free = 1;
|
|
/* ub_event stuff */
|
|
evbits = UB_EV_PERSIST | UB_EV_READ | UB_EV_TIMEOUT;
|
|
c->ev->ev = ub_event_new(base->eb->base, c->fd, evbits,
|
|
comm_point_tcp_handle_callback, c);
|
|
if(c->ev->ev == NULL)
|
|
{
|
|
log_err("could not basetset tcphdl event");
|
|
parent->tcp_free = c->tcp_free;
|
|
tcp_req_info_delete(c->tcp_req_info);
|
|
sldns_buffer_free(c->buffer);
|
|
free(c->timeout);
|
|
free(c->ev);
|
|
free(c);
|
|
return NULL;
|
|
}
|
|
return c;
|
|
}
|
|
|
|
static struct comm_point*
|
|
comm_point_create_http_handler(struct comm_base *base,
|
|
struct comm_point* parent, size_t bufsize, int harden_large_queries,
|
|
uint32_t http_max_streams, char* http_endpoint,
|
|
comm_point_callback_type* callback, void* callback_arg,
|
|
struct unbound_socket* socket)
|
|
{
|
|
struct comm_point* c = (struct comm_point*)calloc(1,
|
|
sizeof(struct comm_point));
|
|
short evbits;
|
|
if(!c)
|
|
return NULL;
|
|
c->ev = (struct internal_event*)calloc(1,
|
|
sizeof(struct internal_event));
|
|
if(!c->ev) {
|
|
free(c);
|
|
return NULL;
|
|
}
|
|
c->ev->base = base;
|
|
c->fd = -1;
|
|
c->buffer = sldns_buffer_new(bufsize);
|
|
if(!c->buffer) {
|
|
free(c->ev);
|
|
free(c);
|
|
return NULL;
|
|
}
|
|
c->timeout = (struct timeval*)malloc(sizeof(struct timeval));
|
|
if(!c->timeout) {
|
|
sldns_buffer_free(c->buffer);
|
|
free(c->ev);
|
|
free(c);
|
|
return NULL;
|
|
}
|
|
c->tcp_is_reading = 0;
|
|
c->tcp_byte_count = 0;
|
|
c->tcp_parent = parent;
|
|
c->tcp_timeout_msec = parent->tcp_timeout_msec;
|
|
c->tcp_conn_limit = parent->tcp_conn_limit;
|
|
c->tcl_addr = NULL;
|
|
c->tcp_keepalive = 0;
|
|
c->max_tcp_count = 0;
|
|
c->cur_tcp_count = 0;
|
|
c->tcp_handlers = NULL;
|
|
c->tcp_free = NULL;
|
|
c->is_in_tcp_free = 0;
|
|
c->type = comm_http;
|
|
c->tcp_do_close = 1;
|
|
c->do_not_close = 0;
|
|
c->tcp_do_toggle_rw = 1; /* will be set to 0 after http2 upgrade */
|
|
c->tcp_check_nb_connect = 0;
|
|
#ifdef USE_MSG_FASTOPEN
|
|
c->tcp_do_fastopen = 0;
|
|
#endif
|
|
#ifdef USE_DNSCRYPT
|
|
c->dnscrypt = 0;
|
|
c->dnscrypt_buffer = NULL;
|
|
#endif
|
|
c->repinfo.c = c;
|
|
c->callback = callback;
|
|
c->cb_arg = callback_arg;
|
|
c->socket = socket;
|
|
c->pp2_enabled = 0;
|
|
c->pp2_header_state = pp2_header_none;
|
|
|
|
c->http_min_version = http_version_2;
|
|
c->http2_stream_max_qbuffer_size = bufsize;
|
|
if(harden_large_queries && bufsize > 512)
|
|
c->http2_stream_max_qbuffer_size = 512;
|
|
c->http2_max_streams = http_max_streams;
|
|
if(!(c->http_endpoint = strdup(http_endpoint))) {
|
|
log_err("could not strdup http_endpoint");
|
|
sldns_buffer_free(c->buffer);
|
|
free(c->timeout);
|
|
free(c->ev);
|
|
free(c);
|
|
return NULL;
|
|
}
|
|
c->use_h2 = 0;
|
|
#ifdef HAVE_NGHTTP2
|
|
if(!(c->h2_session = http2_session_create(c))) {
|
|
log_err("could not create http2 session");
|
|
free(c->http_endpoint);
|
|
sldns_buffer_free(c->buffer);
|
|
free(c->timeout);
|
|
free(c->ev);
|
|
free(c);
|
|
return NULL;
|
|
}
|
|
if(!(c->h2_session->callbacks = http2_req_callbacks_create())) {
|
|
log_err("could not create http2 callbacks");
|
|
http2_session_delete(c->h2_session);
|
|
free(c->http_endpoint);
|
|
sldns_buffer_free(c->buffer);
|
|
free(c->timeout);
|
|
free(c->ev);
|
|
free(c);
|
|
return NULL;
|
|
}
|
|
#endif
|
|
|
|
/* add to parent free list */
|
|
c->tcp_free = parent->tcp_free;
|
|
parent->tcp_free = c;
|
|
c->is_in_tcp_free = 1;
|
|
/* ub_event stuff */
|
|
evbits = UB_EV_PERSIST | UB_EV_READ | UB_EV_TIMEOUT;
|
|
c->ev->ev = ub_event_new(base->eb->base, c->fd, evbits,
|
|
comm_point_http_handle_callback, c);
|
|
if(c->ev->ev == NULL)
|
|
{
|
|
log_err("could not set http handler event");
|
|
parent->tcp_free = c->tcp_free;
|
|
http2_session_delete(c->h2_session);
|
|
sldns_buffer_free(c->buffer);
|
|
free(c->timeout);
|
|
free(c->ev);
|
|
free(c);
|
|
return NULL;
|
|
}
|
|
return c;
|
|
}
|
|
|
|
struct comm_point*
|
|
comm_point_create_tcp(struct comm_base *base, int fd, int num,
|
|
int idle_timeout, int harden_large_queries,
|
|
uint32_t http_max_streams, char* http_endpoint,
|
|
struct tcl_list* tcp_conn_limit, size_t bufsize,
|
|
struct sldns_buffer* spoolbuf, enum listen_type port_type,
|
|
int pp2_enabled, comm_point_callback_type* callback,
|
|
void* callback_arg, struct unbound_socket* socket)
|
|
{
|
|
struct comm_point* c = (struct comm_point*)calloc(1,
|
|
sizeof(struct comm_point));
|
|
short evbits;
|
|
int i;
|
|
/* first allocate the TCP accept listener */
|
|
if(!c)
|
|
return NULL;
|
|
c->ev = (struct internal_event*)calloc(1,
|
|
sizeof(struct internal_event));
|
|
if(!c->ev) {
|
|
free(c);
|
|
return NULL;
|
|
}
|
|
c->ev->base = base;
|
|
c->fd = fd;
|
|
c->buffer = NULL;
|
|
c->timeout = NULL;
|
|
c->tcp_is_reading = 0;
|
|
c->tcp_byte_count = 0;
|
|
c->tcp_timeout_msec = idle_timeout;
|
|
c->tcp_conn_limit = tcp_conn_limit;
|
|
c->tcl_addr = NULL;
|
|
c->tcp_keepalive = 0;
|
|
c->tcp_parent = NULL;
|
|
c->max_tcp_count = num;
|
|
c->cur_tcp_count = 0;
|
|
c->tcp_handlers = (struct comm_point**)calloc((size_t)num,
|
|
sizeof(struct comm_point*));
|
|
if(!c->tcp_handlers) {
|
|
free(c->ev);
|
|
free(c);
|
|
return NULL;
|
|
}
|
|
c->tcp_free = NULL;
|
|
c->is_in_tcp_free = 0;
|
|
c->type = comm_tcp_accept;
|
|
c->tcp_do_close = 0;
|
|
c->do_not_close = 0;
|
|
c->tcp_do_toggle_rw = 0;
|
|
c->tcp_check_nb_connect = 0;
|
|
#ifdef USE_MSG_FASTOPEN
|
|
c->tcp_do_fastopen = 0;
|
|
#endif
|
|
#ifdef USE_DNSCRYPT
|
|
c->dnscrypt = 0;
|
|
c->dnscrypt_buffer = NULL;
|
|
#endif
|
|
c->callback = NULL;
|
|
c->cb_arg = NULL;
|
|
c->socket = socket;
|
|
c->pp2_enabled = (port_type==listen_type_http?0:pp2_enabled);
|
|
c->pp2_header_state = pp2_header_none;
|
|
evbits = UB_EV_READ | UB_EV_PERSIST;
|
|
/* ub_event stuff */
|
|
c->ev->ev = ub_event_new(base->eb->base, c->fd, evbits,
|
|
comm_point_tcp_accept_callback, c);
|
|
if(c->ev->ev == NULL) {
|
|
log_err("could not baseset tcpacc event");
|
|
comm_point_delete(c);
|
|
return NULL;
|
|
}
|
|
if (ub_event_add(c->ev->ev, c->timeout) != 0) {
|
|
log_err("could not add tcpacc event");
|
|
comm_point_delete(c);
|
|
return NULL;
|
|
}
|
|
c->event_added = 1;
|
|
/* now prealloc the handlers */
|
|
for(i=0; i<num; i++) {
|
|
if(port_type == listen_type_tcp ||
|
|
port_type == listen_type_ssl ||
|
|
port_type == listen_type_tcp_dnscrypt) {
|
|
c->tcp_handlers[i] = comm_point_create_tcp_handler(base,
|
|
c, bufsize, spoolbuf, callback, callback_arg, socket);
|
|
} else if(port_type == listen_type_http) {
|
|
c->tcp_handlers[i] = comm_point_create_http_handler(
|
|
base, c, bufsize, harden_large_queries,
|
|
http_max_streams, http_endpoint,
|
|
callback, callback_arg, socket);
|
|
}
|
|
else {
|
|
log_err("could not create tcp handler, unknown listen "
|
|
"type");
|
|
return NULL;
|
|
}
|
|
if(!c->tcp_handlers[i]) {
|
|
comm_point_delete(c);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
return c;
|
|
}
|
|
|
|
struct comm_point*
|
|
comm_point_create_tcp_out(struct comm_base *base, size_t bufsize,
|
|
comm_point_callback_type* callback, void* callback_arg)
|
|
{
|
|
struct comm_point* c = (struct comm_point*)calloc(1,
|
|
sizeof(struct comm_point));
|
|
short evbits;
|
|
if(!c)
|
|
return NULL;
|
|
c->ev = (struct internal_event*)calloc(1,
|
|
sizeof(struct internal_event));
|
|
if(!c->ev) {
|
|
free(c);
|
|
return NULL;
|
|
}
|
|
c->ev->base = base;
|
|
c->fd = -1;
|
|
c->buffer = sldns_buffer_new(bufsize);
|
|
if(!c->buffer) {
|
|
free(c->ev);
|
|
free(c);
|
|
return NULL;
|
|
}
|
|
c->timeout = NULL;
|
|
c->tcp_is_reading = 0;
|
|
c->tcp_byte_count = 0;
|
|
c->tcp_timeout_msec = TCP_QUERY_TIMEOUT;
|
|
c->tcp_conn_limit = NULL;
|
|
c->tcl_addr = NULL;
|
|
c->tcp_keepalive = 0;
|
|
c->tcp_parent = NULL;
|
|
c->max_tcp_count = 0;
|
|
c->cur_tcp_count = 0;
|
|
c->tcp_handlers = NULL;
|
|
c->tcp_free = NULL;
|
|
c->is_in_tcp_free = 0;
|
|
c->type = comm_tcp;
|
|
c->tcp_do_close = 0;
|
|
c->do_not_close = 0;
|
|
c->tcp_do_toggle_rw = 1;
|
|
c->tcp_check_nb_connect = 1;
|
|
#ifdef USE_MSG_FASTOPEN
|
|
c->tcp_do_fastopen = 1;
|
|
#endif
|
|
#ifdef USE_DNSCRYPT
|
|
c->dnscrypt = 0;
|
|
c->dnscrypt_buffer = c->buffer;
|
|
#endif
|
|
c->repinfo.c = c;
|
|
c->callback = callback;
|
|
c->cb_arg = callback_arg;
|
|
c->pp2_enabled = 0;
|
|
c->pp2_header_state = pp2_header_none;
|
|
evbits = UB_EV_PERSIST | UB_EV_WRITE;
|
|
c->ev->ev = ub_event_new(base->eb->base, c->fd, evbits,
|
|
comm_point_tcp_handle_callback, c);
|
|
if(c->ev->ev == NULL)
|
|
{
|
|
log_err("could not baseset tcpout event");
|
|
sldns_buffer_free(c->buffer);
|
|
free(c->ev);
|
|
free(c);
|
|
return NULL;
|
|
}
|
|
|
|
return c;
|
|
}
|
|
|
|
struct comm_point*
|
|
comm_point_create_http_out(struct comm_base *base, size_t bufsize,
|
|
comm_point_callback_type* callback, void* callback_arg,
|
|
sldns_buffer* temp)
|
|
{
|
|
struct comm_point* c = (struct comm_point*)calloc(1,
|
|
sizeof(struct comm_point));
|
|
short evbits;
|
|
if(!c)
|
|
return NULL;
|
|
c->ev = (struct internal_event*)calloc(1,
|
|
sizeof(struct internal_event));
|
|
if(!c->ev) {
|
|
free(c);
|
|
return NULL;
|
|
}
|
|
c->ev->base = base;
|
|
c->fd = -1;
|
|
c->buffer = sldns_buffer_new(bufsize);
|
|
if(!c->buffer) {
|
|
free(c->ev);
|
|
free(c);
|
|
return NULL;
|
|
}
|
|
c->timeout = NULL;
|
|
c->tcp_is_reading = 0;
|
|
c->tcp_byte_count = 0;
|
|
c->tcp_parent = NULL;
|
|
c->max_tcp_count = 0;
|
|
c->cur_tcp_count = 0;
|
|
c->tcp_handlers = NULL;
|
|
c->tcp_free = NULL;
|
|
c->is_in_tcp_free = 0;
|
|
c->type = comm_http;
|
|
c->tcp_do_close = 0;
|
|
c->do_not_close = 0;
|
|
c->tcp_do_toggle_rw = 1;
|
|
c->tcp_check_nb_connect = 1;
|
|
c->http_in_headers = 1;
|
|
c->http_in_chunk_headers = 0;
|
|
c->http_is_chunked = 0;
|
|
c->http_temp = temp;
|
|
#ifdef USE_MSG_FASTOPEN
|
|
c->tcp_do_fastopen = 1;
|
|
#endif
|
|
#ifdef USE_DNSCRYPT
|
|
c->dnscrypt = 0;
|
|
c->dnscrypt_buffer = c->buffer;
|
|
#endif
|
|
c->repinfo.c = c;
|
|
c->callback = callback;
|
|
c->cb_arg = callback_arg;
|
|
c->pp2_enabled = 0;
|
|
c->pp2_header_state = pp2_header_none;
|
|
evbits = UB_EV_PERSIST | UB_EV_WRITE;
|
|
c->ev->ev = ub_event_new(base->eb->base, c->fd, evbits,
|
|
comm_point_http_handle_callback, c);
|
|
if(c->ev->ev == NULL)
|
|
{
|
|
log_err("could not baseset tcpout event");
|
|
#ifdef HAVE_SSL
|
|
SSL_free(c->ssl);
|
|
#endif
|
|
sldns_buffer_free(c->buffer);
|
|
free(c->ev);
|
|
free(c);
|
|
return NULL;
|
|
}
|
|
|
|
return c;
|
|
}
|
|
|
|
struct comm_point*
|
|
comm_point_create_local(struct comm_base *base, int fd, size_t bufsize,
|
|
comm_point_callback_type* callback, void* callback_arg)
|
|
{
|
|
struct comm_point* c = (struct comm_point*)calloc(1,
|
|
sizeof(struct comm_point));
|
|
short evbits;
|
|
if(!c)
|
|
return NULL;
|
|
c->ev = (struct internal_event*)calloc(1,
|
|
sizeof(struct internal_event));
|
|
if(!c->ev) {
|
|
free(c);
|
|
return NULL;
|
|
}
|
|
c->ev->base = base;
|
|
c->fd = fd;
|
|
c->buffer = sldns_buffer_new(bufsize);
|
|
if(!c->buffer) {
|
|
free(c->ev);
|
|
free(c);
|
|
return NULL;
|
|
}
|
|
c->timeout = NULL;
|
|
c->tcp_is_reading = 1;
|
|
c->tcp_byte_count = 0;
|
|
c->tcp_parent = NULL;
|
|
c->max_tcp_count = 0;
|
|
c->cur_tcp_count = 0;
|
|
c->tcp_handlers = NULL;
|
|
c->tcp_free = NULL;
|
|
c->is_in_tcp_free = 0;
|
|
c->type = comm_local;
|
|
c->tcp_do_close = 0;
|
|
c->do_not_close = 1;
|
|
c->tcp_do_toggle_rw = 0;
|
|
c->tcp_check_nb_connect = 0;
|
|
#ifdef USE_MSG_FASTOPEN
|
|
c->tcp_do_fastopen = 0;
|
|
#endif
|
|
#ifdef USE_DNSCRYPT
|
|
c->dnscrypt = 0;
|
|
c->dnscrypt_buffer = c->buffer;
|
|
#endif
|
|
c->callback = callback;
|
|
c->cb_arg = callback_arg;
|
|
c->pp2_enabled = 0;
|
|
c->pp2_header_state = pp2_header_none;
|
|
/* ub_event stuff */
|
|
evbits = UB_EV_PERSIST | UB_EV_READ;
|
|
c->ev->ev = ub_event_new(base->eb->base, c->fd, evbits,
|
|
comm_point_local_handle_callback, c);
|
|
if(c->ev->ev == NULL) {
|
|
log_err("could not baseset localhdl event");
|
|
free(c->ev);
|
|
free(c);
|
|
return NULL;
|
|
}
|
|
if (ub_event_add(c->ev->ev, c->timeout) != 0) {
|
|
log_err("could not add localhdl event");
|
|
ub_event_free(c->ev->ev);
|
|
free(c->ev);
|
|
free(c);
|
|
return NULL;
|
|
}
|
|
c->event_added = 1;
|
|
return c;
|
|
}
|
|
|
|
struct comm_point*
|
|
comm_point_create_raw(struct comm_base* base, int fd, int writing,
|
|
comm_point_callback_type* callback, void* callback_arg)
|
|
{
|
|
struct comm_point* c = (struct comm_point*)calloc(1,
|
|
sizeof(struct comm_point));
|
|
short evbits;
|
|
if(!c)
|
|
return NULL;
|
|
c->ev = (struct internal_event*)calloc(1,
|
|
sizeof(struct internal_event));
|
|
if(!c->ev) {
|
|
free(c);
|
|
return NULL;
|
|
}
|
|
c->ev->base = base;
|
|
c->fd = fd;
|
|
c->buffer = NULL;
|
|
c->timeout = NULL;
|
|
c->tcp_is_reading = 0;
|
|
c->tcp_byte_count = 0;
|
|
c->tcp_parent = NULL;
|
|
c->max_tcp_count = 0;
|
|
c->cur_tcp_count = 0;
|
|
c->tcp_handlers = NULL;
|
|
c->tcp_free = NULL;
|
|
c->is_in_tcp_free = 0;
|
|
c->type = comm_raw;
|
|
c->tcp_do_close = 0;
|
|
c->do_not_close = 1;
|
|
c->tcp_do_toggle_rw = 0;
|
|
c->tcp_check_nb_connect = 0;
|
|
#ifdef USE_MSG_FASTOPEN
|
|
c->tcp_do_fastopen = 0;
|
|
#endif
|
|
#ifdef USE_DNSCRYPT
|
|
c->dnscrypt = 0;
|
|
c->dnscrypt_buffer = c->buffer;
|
|
#endif
|
|
c->callback = callback;
|
|
c->cb_arg = callback_arg;
|
|
c->pp2_enabled = 0;
|
|
c->pp2_header_state = pp2_header_none;
|
|
/* ub_event stuff */
|
|
if(writing)
|
|
evbits = UB_EV_PERSIST | UB_EV_WRITE;
|
|
else evbits = UB_EV_PERSIST | UB_EV_READ;
|
|
c->ev->ev = ub_event_new(base->eb->base, c->fd, evbits,
|
|
comm_point_raw_handle_callback, c);
|
|
if(c->ev->ev == NULL) {
|
|
log_err("could not baseset rawhdl event");
|
|
free(c->ev);
|
|
free(c);
|
|
return NULL;
|
|
}
|
|
if (ub_event_add(c->ev->ev, c->timeout) != 0) {
|
|
log_err("could not add rawhdl event");
|
|
ub_event_free(c->ev->ev);
|
|
free(c->ev);
|
|
free(c);
|
|
return NULL;
|
|
}
|
|
c->event_added = 1;
|
|
return c;
|
|
}
|
|
|
|
void
|
|
comm_point_close(struct comm_point* c)
|
|
{
|
|
if(!c)
|
|
return;
|
|
if(c->fd != -1) {
|
|
verbose(5, "comm_point_close of %d: event_del", c->fd);
|
|
if(c->event_added) {
|
|
if(ub_event_del(c->ev->ev) != 0) {
|
|
log_err("could not event_del on close");
|
|
}
|
|
c->event_added = 0;
|
|
}
|
|
}
|
|
tcl_close_connection(c->tcl_addr);
|
|
if(c->tcp_req_info)
|
|
tcp_req_info_clear(c->tcp_req_info);
|
|
if(c->h2_session)
|
|
http2_session_server_delete(c->h2_session);
|
|
/* stop the comm point from reading or writing after it is closed. */
|
|
if(c->tcp_more_read_again && *c->tcp_more_read_again)
|
|
*c->tcp_more_read_again = 0;
|
|
if(c->tcp_more_write_again && *c->tcp_more_write_again)
|
|
*c->tcp_more_write_again = 0;
|
|
|
|
/* close fd after removing from event lists, or epoll.. is messed up */
|
|
if(c->fd != -1 && !c->do_not_close) {
|
|
#ifdef USE_WINSOCK
|
|
if(c->type == comm_tcp || c->type == comm_http) {
|
|
/* delete sticky events for the fd, it gets closed */
|
|
ub_winsock_tcp_wouldblock(c->ev->ev, UB_EV_READ);
|
|
ub_winsock_tcp_wouldblock(c->ev->ev, UB_EV_WRITE);
|
|
}
|
|
#endif
|
|
verbose(VERB_ALGO, "close fd %d", c->fd);
|
|
sock_close(c->fd);
|
|
}
|
|
c->fd = -1;
|
|
}
|
|
|
|
void
|
|
comm_point_delete(struct comm_point* c)
|
|
{
|
|
if(!c)
|
|
return;
|
|
if((c->type == comm_tcp || c->type == comm_http) && c->ssl) {
|
|
#ifdef HAVE_SSL
|
|
SSL_shutdown(c->ssl);
|
|
SSL_free(c->ssl);
|
|
#endif
|
|
}
|
|
if(c->type == comm_http && c->http_endpoint) {
|
|
free(c->http_endpoint);
|
|
c->http_endpoint = NULL;
|
|
}
|
|
comm_point_close(c);
|
|
if(c->tcp_handlers) {
|
|
int i;
|
|
for(i=0; i<c->max_tcp_count; i++)
|
|
comm_point_delete(c->tcp_handlers[i]);
|
|
free(c->tcp_handlers);
|
|
}
|
|
free(c->timeout);
|
|
if(c->type == comm_tcp || c->type == comm_local || c->type == comm_http) {
|
|
sldns_buffer_free(c->buffer);
|
|
#ifdef USE_DNSCRYPT
|
|
if(c->dnscrypt && c->dnscrypt_buffer != c->buffer) {
|
|
sldns_buffer_free(c->dnscrypt_buffer);
|
|
}
|
|
#endif
|
|
if(c->tcp_req_info) {
|
|
tcp_req_info_delete(c->tcp_req_info);
|
|
}
|
|
if(c->h2_session) {
|
|
http2_session_delete(c->h2_session);
|
|
}
|
|
}
|
|
#ifdef HAVE_NGTCP2
|
|
if(c->doq_socket)
|
|
doq_server_socket_delete(c->doq_socket);
|
|
#endif
|
|
ub_event_free(c->ev->ev);
|
|
free(c->ev);
|
|
free(c);
|
|
}
|
|
|
|
#ifdef USE_DNSTAP
|
|
static void
|
|
send_reply_dnstap(struct dt_env* dtenv,
|
|
struct sockaddr* addr, socklen_t addrlen,
|
|
struct sockaddr_storage* client_addr, socklen_t client_addrlen,
|
|
enum comm_point_type type, void* ssl, sldns_buffer* buffer)
|
|
{
|
|
log_addr(VERB_ALGO, "from local addr", (void*)addr, addrlen);
|
|
log_addr(VERB_ALGO, "response to client", client_addr, client_addrlen);
|
|
dt_msg_send_client_response(dtenv, client_addr,
|
|
(struct sockaddr_storage*)addr, type, ssl, buffer);
|
|
}
|
|
#endif
|
|
|
|
void
|
|
comm_point_send_reply(struct comm_reply *repinfo)
|
|
{
|
|
struct sldns_buffer* buffer;
|
|
log_assert(repinfo && repinfo->c);
|
|
#ifdef USE_DNSCRYPT
|
|
buffer = repinfo->c->dnscrypt_buffer;
|
|
if(!dnsc_handle_uncurved_request(repinfo)) {
|
|
return;
|
|
}
|
|
#else
|
|
buffer = repinfo->c->buffer;
|
|
#endif
|
|
if(repinfo->c->type == comm_udp) {
|
|
if(repinfo->srctype)
|
|
comm_point_send_udp_msg_if(repinfo->c, buffer,
|
|
(struct sockaddr*)&repinfo->remote_addr,
|
|
repinfo->remote_addrlen, repinfo);
|
|
else
|
|
comm_point_send_udp_msg(repinfo->c, buffer,
|
|
(struct sockaddr*)&repinfo->remote_addr,
|
|
repinfo->remote_addrlen, 0);
|
|
#ifdef USE_DNSTAP
|
|
/*
|
|
* sending src (client)/dst (local service) addresses over
|
|
* DNSTAP from udp callback
|
|
*/
|
|
if(repinfo->c->dtenv != NULL && repinfo->c->dtenv->log_client_response_messages) {
|
|
send_reply_dnstap(repinfo->c->dtenv,
|
|
repinfo->c->socket->addr,
|
|
repinfo->c->socket->addrlen,
|
|
&repinfo->client_addr, repinfo->client_addrlen,
|
|
repinfo->c->type, repinfo->c->ssl,
|
|
repinfo->c->buffer);
|
|
}
|
|
#endif
|
|
} else {
|
|
#ifdef USE_DNSTAP
|
|
struct dt_env* dtenv =
|
|
#ifdef HAVE_NGTCP2
|
|
repinfo->c->doq_socket
|
|
?repinfo->c->dtenv:
|
|
#endif
|
|
repinfo->c->tcp_parent->dtenv;
|
|
struct sldns_buffer* dtbuffer = repinfo->c->tcp_req_info
|
|
?repinfo->c->tcp_req_info->spool_buffer
|
|
:repinfo->c->buffer;
|
|
#ifdef USE_DNSCRYPT
|
|
if(repinfo->c->dnscrypt && repinfo->is_dnscrypted)
|
|
dtbuffer = repinfo->c->buffer;
|
|
#endif
|
|
/*
|
|
* sending src (client)/dst (local service) addresses over
|
|
* DNSTAP from other callbacks
|
|
*/
|
|
if(dtenv != NULL && dtenv->log_client_response_messages) {
|
|
send_reply_dnstap(dtenv,
|
|
repinfo->c->socket->addr,
|
|
repinfo->c->socket->addrlen,
|
|
&repinfo->client_addr, repinfo->client_addrlen,
|
|
repinfo->c->type, repinfo->c->ssl,
|
|
dtbuffer);
|
|
}
|
|
#endif
|
|
if(repinfo->c->tcp_req_info) {
|
|
tcp_req_info_send_reply(repinfo->c->tcp_req_info);
|
|
} else if(repinfo->c->use_h2) {
|
|
if(!http2_submit_dns_response(repinfo->c->h2_session)) {
|
|
return;
|
|
}
|
|
repinfo->c->h2_stream = NULL;
|
|
repinfo->c->tcp_is_reading = 0;
|
|
comm_point_stop_listening(repinfo->c);
|
|
comm_point_start_listening(repinfo->c, -1,
|
|
adjusted_tcp_timeout(repinfo->c));
|
|
return;
|
|
#ifdef HAVE_NGTCP2
|
|
} else if(repinfo->c->doq_socket) {
|
|
doq_socket_send_reply(repinfo);
|
|
#endif
|
|
} else {
|
|
comm_point_start_listening(repinfo->c, -1,
|
|
adjusted_tcp_timeout(repinfo->c));
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
comm_point_drop_reply(struct comm_reply* repinfo)
|
|
{
|
|
if(!repinfo)
|
|
return;
|
|
log_assert(repinfo->c);
|
|
log_assert(repinfo->c->type != comm_tcp_accept);
|
|
if(repinfo->c->type == comm_udp)
|
|
return;
|
|
if(repinfo->c->tcp_req_info)
|
|
repinfo->c->tcp_req_info->is_drop = 1;
|
|
if(repinfo->c->type == comm_http) {
|
|
if(repinfo->c->h2_session) {
|
|
repinfo->c->h2_session->is_drop = 1;
|
|
if(!repinfo->c->h2_session->postpone_drop)
|
|
reclaim_http_handler(repinfo->c);
|
|
return;
|
|
}
|
|
reclaim_http_handler(repinfo->c);
|
|
return;
|
|
#ifdef HAVE_NGTCP2
|
|
} else if(repinfo->c->doq_socket) {
|
|
doq_socket_drop_reply(repinfo);
|
|
return;
|
|
#endif
|
|
}
|
|
reclaim_tcp_handler(repinfo->c);
|
|
}
|
|
|
|
void
|
|
comm_point_stop_listening(struct comm_point* c)
|
|
{
|
|
verbose(VERB_ALGO, "comm point stop listening %d", c->fd);
|
|
if(c->event_added) {
|
|
if(ub_event_del(c->ev->ev) != 0) {
|
|
log_err("event_del error to stoplisten");
|
|
}
|
|
c->event_added = 0;
|
|
}
|
|
}
|
|
|
|
void
|
|
comm_point_start_listening(struct comm_point* c, int newfd, int msec)
|
|
{
|
|
verbose(VERB_ALGO, "comm point start listening %d (%d msec)",
|
|
c->fd==-1?newfd:c->fd, msec);
|
|
if(c->type == comm_tcp_accept && !c->tcp_free) {
|
|
/* no use to start listening no free slots. */
|
|
return;
|
|
}
|
|
if(c->event_added) {
|
|
if(ub_event_del(c->ev->ev) != 0) {
|
|
log_err("event_del error to startlisten");
|
|
}
|
|
c->event_added = 0;
|
|
}
|
|
if(msec != -1 && msec != 0) {
|
|
if(!c->timeout) {
|
|
c->timeout = (struct timeval*)malloc(sizeof(
|
|
struct timeval));
|
|
if(!c->timeout) {
|
|
log_err("cpsl: malloc failed. No net read.");
|
|
return;
|
|
}
|
|
}
|
|
ub_event_add_bits(c->ev->ev, UB_EV_TIMEOUT);
|
|
#ifndef S_SPLINT_S /* splint fails on struct timeval. */
|
|
c->timeout->tv_sec = msec/1000;
|
|
c->timeout->tv_usec = (msec%1000)*1000;
|
|
#endif /* S_SPLINT_S */
|
|
} else {
|
|
if(msec == 0 || !c->timeout) {
|
|
ub_event_del_bits(c->ev->ev, UB_EV_TIMEOUT);
|
|
}
|
|
}
|
|
if(c->type == comm_tcp || c->type == comm_http) {
|
|
ub_event_del_bits(c->ev->ev, UB_EV_READ|UB_EV_WRITE);
|
|
if(c->tcp_write_and_read) {
|
|
verbose(5, "startlistening %d mode rw", (newfd==-1?c->fd:newfd));
|
|
ub_event_add_bits(c->ev->ev, UB_EV_READ|UB_EV_WRITE);
|
|
} else if(c->tcp_is_reading) {
|
|
verbose(5, "startlistening %d mode r", (newfd==-1?c->fd:newfd));
|
|
ub_event_add_bits(c->ev->ev, UB_EV_READ);
|
|
} else {
|
|
verbose(5, "startlistening %d mode w", (newfd==-1?c->fd:newfd));
|
|
ub_event_add_bits(c->ev->ev, UB_EV_WRITE);
|
|
}
|
|
}
|
|
if(newfd != -1) {
|
|
if(c->fd != -1 && c->fd != newfd) {
|
|
verbose(5, "cpsl close of fd %d for %d", c->fd, newfd);
|
|
sock_close(c->fd);
|
|
}
|
|
c->fd = newfd;
|
|
ub_event_set_fd(c->ev->ev, c->fd);
|
|
}
|
|
if(ub_event_add(c->ev->ev, msec==0?NULL:c->timeout) != 0) {
|
|
log_err("event_add failed. in cpsl.");
|
|
return;
|
|
}
|
|
c->event_added = 1;
|
|
}
|
|
|
|
void comm_point_listen_for_rw(struct comm_point* c, int rd, int wr)
|
|
{
|
|
verbose(VERB_ALGO, "comm point listen_for_rw %d %d", c->fd, wr);
|
|
if(c->event_added) {
|
|
if(ub_event_del(c->ev->ev) != 0) {
|
|
log_err("event_del error to cplf");
|
|
}
|
|
c->event_added = 0;
|
|
}
|
|
if(!c->timeout) {
|
|
ub_event_del_bits(c->ev->ev, UB_EV_TIMEOUT);
|
|
}
|
|
ub_event_del_bits(c->ev->ev, UB_EV_READ|UB_EV_WRITE);
|
|
if(rd) ub_event_add_bits(c->ev->ev, UB_EV_READ);
|
|
if(wr) ub_event_add_bits(c->ev->ev, UB_EV_WRITE);
|
|
if(ub_event_add(c->ev->ev, c->timeout) != 0) {
|
|
log_err("event_add failed. in cplf.");
|
|
return;
|
|
}
|
|
c->event_added = 1;
|
|
}
|
|
|
|
size_t comm_point_get_mem(struct comm_point* c)
|
|
{
|
|
size_t s;
|
|
if(!c)
|
|
return 0;
|
|
s = sizeof(*c) + sizeof(*c->ev);
|
|
if(c->timeout)
|
|
s += sizeof(*c->timeout);
|
|
if(c->type == comm_tcp || c->type == comm_local) {
|
|
s += sizeof(*c->buffer) + sldns_buffer_capacity(c->buffer);
|
|
#ifdef USE_DNSCRYPT
|
|
s += sizeof(*c->dnscrypt_buffer);
|
|
if(c->buffer != c->dnscrypt_buffer) {
|
|
s += sldns_buffer_capacity(c->dnscrypt_buffer);
|
|
}
|
|
#endif
|
|
}
|
|
if(c->type == comm_tcp_accept) {
|
|
int i;
|
|
for(i=0; i<c->max_tcp_count; i++)
|
|
s += comm_point_get_mem(c->tcp_handlers[i]);
|
|
}
|
|
return s;
|
|
}
|
|
|
|
struct comm_timer*
|
|
comm_timer_create(struct comm_base* base, void (*cb)(void*), void* cb_arg)
|
|
{
|
|
struct internal_timer *tm = (struct internal_timer*)calloc(1,
|
|
sizeof(struct internal_timer));
|
|
if(!tm) {
|
|
log_err("malloc failed");
|
|
return NULL;
|
|
}
|
|
tm->super.ev_timer = tm;
|
|
tm->base = base;
|
|
tm->super.callback = cb;
|
|
tm->super.cb_arg = cb_arg;
|
|
tm->ev = ub_event_new(base->eb->base, -1, UB_EV_TIMEOUT,
|
|
comm_timer_callback, &tm->super);
|
|
if(tm->ev == NULL) {
|
|
log_err("timer_create: event_base_set failed.");
|
|
free(tm);
|
|
return NULL;
|
|
}
|
|
return &tm->super;
|
|
}
|
|
|
|
void
|
|
comm_timer_disable(struct comm_timer* timer)
|
|
{
|
|
if(!timer)
|
|
return;
|
|
ub_timer_del(timer->ev_timer->ev);
|
|
timer->ev_timer->enabled = 0;
|
|
}
|
|
|
|
void
|
|
comm_timer_set(struct comm_timer* timer, struct timeval* tv)
|
|
{
|
|
log_assert(tv);
|
|
if(timer->ev_timer->enabled)
|
|
comm_timer_disable(timer);
|
|
if(ub_timer_add(timer->ev_timer->ev, timer->ev_timer->base->eb->base,
|
|
comm_timer_callback, timer, tv) != 0)
|
|
log_err("comm_timer_set: evtimer_add failed.");
|
|
timer->ev_timer->enabled = 1;
|
|
}
|
|
|
|
void
|
|
comm_timer_delete(struct comm_timer* timer)
|
|
{
|
|
if(!timer)
|
|
return;
|
|
comm_timer_disable(timer);
|
|
/* Free the sub struct timer->ev_timer derived from the super struct timer.
|
|
* i.e. assert(timer == timer->ev_timer)
|
|
*/
|
|
ub_event_free(timer->ev_timer->ev);
|
|
free(timer->ev_timer);
|
|
}
|
|
|
|
void
|
|
comm_timer_callback(int ATTR_UNUSED(fd), short event, void* arg)
|
|
{
|
|
struct comm_timer* tm = (struct comm_timer*)arg;
|
|
if(!(event&UB_EV_TIMEOUT))
|
|
return;
|
|
ub_comm_base_now(tm->ev_timer->base);
|
|
tm->ev_timer->enabled = 0;
|
|
fptr_ok(fptr_whitelist_comm_timer(tm->callback));
|
|
(*tm->callback)(tm->cb_arg);
|
|
}
|
|
|
|
int
|
|
comm_timer_is_set(struct comm_timer* timer)
|
|
{
|
|
return (int)timer->ev_timer->enabled;
|
|
}
|
|
|
|
size_t
|
|
comm_timer_get_mem(struct comm_timer* timer)
|
|
{
|
|
if(!timer) return 0;
|
|
return sizeof(struct internal_timer);
|
|
}
|
|
|
|
struct comm_signal*
|
|
comm_signal_create(struct comm_base* base,
|
|
void (*callback)(int, void*), void* cb_arg)
|
|
{
|
|
struct comm_signal* com = (struct comm_signal*)malloc(
|
|
sizeof(struct comm_signal));
|
|
if(!com) {
|
|
log_err("malloc failed");
|
|
return NULL;
|
|
}
|
|
com->base = base;
|
|
com->callback = callback;
|
|
com->cb_arg = cb_arg;
|
|
com->ev_signal = NULL;
|
|
return com;
|
|
}
|
|
|
|
void
|
|
comm_signal_callback(int sig, short event, void* arg)
|
|
{
|
|
struct comm_signal* comsig = (struct comm_signal*)arg;
|
|
if(!(event & UB_EV_SIGNAL))
|
|
return;
|
|
ub_comm_base_now(comsig->base);
|
|
fptr_ok(fptr_whitelist_comm_signal(comsig->callback));
|
|
(*comsig->callback)(sig, comsig->cb_arg);
|
|
}
|
|
|
|
int
|
|
comm_signal_bind(struct comm_signal* comsig, int sig)
|
|
{
|
|
struct internal_signal* entry = (struct internal_signal*)calloc(1,
|
|
sizeof(struct internal_signal));
|
|
if(!entry) {
|
|
log_err("malloc failed");
|
|
return 0;
|
|
}
|
|
log_assert(comsig);
|
|
/* add signal event */
|
|
entry->ev = ub_signal_new(comsig->base->eb->base, sig,
|
|
comm_signal_callback, comsig);
|
|
if(entry->ev == NULL) {
|
|
log_err("Could not create signal event");
|
|
free(entry);
|
|
return 0;
|
|
}
|
|
if(ub_signal_add(entry->ev, NULL) != 0) {
|
|
log_err("Could not add signal handler");
|
|
ub_event_free(entry->ev);
|
|
free(entry);
|
|
return 0;
|
|
}
|
|
/* link into list */
|
|
entry->next = comsig->ev_signal;
|
|
comsig->ev_signal = entry;
|
|
return 1;
|
|
}
|
|
|
|
void
|
|
comm_signal_delete(struct comm_signal* comsig)
|
|
{
|
|
struct internal_signal* p, *np;
|
|
if(!comsig)
|
|
return;
|
|
p=comsig->ev_signal;
|
|
while(p) {
|
|
np = p->next;
|
|
ub_signal_del(p->ev);
|
|
ub_event_free(p->ev);
|
|
free(p);
|
|
p = np;
|
|
}
|
|
free(comsig);
|
|
}
|