unbound/dnscrypt/dnscrypt.c
Wouter Wijngaards 52e2331dd4 - [dnscrypt] prevent dnscrypt-secret-key, dnscrypt-provider-cert
duplicates
- [dnscrypt] introduce dnscrypt-provider-cert-rotated option,
  from Manu Bretelle.
	This option allows handling multiple cert/key pairs while only
	distributing some of them.
	In order to reliably match a client magic with a given key without
	strong assumption as to how those were generated, we need both key and
	cert. Likewise, in order to know which ES version should be used.
	On the other hand, when rotating a cert, it can be desirable to only
	serve the new cert but still be able to handle clients that are still
	using the old certs's public key.
	The `dnscrypt-provider-cert-rotated` allow to instruct unbound to not
	publish the cert as part of the DNS's provider_name's TXT answer.



git-svn-id: file:///svn/unbound/trunk@4373 be551aaa-1e26-0410-a405-d3ace91eadb9
2017-10-17 07:34:49 +00:00

1096 lines
35 KiB
C

#include "config.h"
#include <stdlib.h>
#include <fcntl.h>
#ifdef HAVE_TIME_H
#include <time.h>
#endif
#include <inttypes.h>
#include <sys/time.h>
#include <sys/types.h>
#include "sldns/sbuffer.h"
#include "util/config_file.h"
#include "util/net_help.h"
#include "util/netevent.h"
#include "util/log.h"
#include "util/storage/slabhash.h"
#include "util/storage/lookup3.h"
#include "dnscrypt/cert.h"
#include "dnscrypt/dnscrypt.h"
#include "dnscrypt/dnscrypt_config.h"
#include <ctype.h>
/**
* \file
* dnscrypt functions for encrypting DNS packets.
*/
#define DNSCRYPT_QUERY_BOX_OFFSET \
(DNSCRYPT_MAGIC_HEADER_LEN + crypto_box_PUBLICKEYBYTES + \
crypto_box_HALF_NONCEBYTES)
// 8 bytes: magic header (CERT_MAGIC_HEADER)
// 12 bytes: the client's nonce
// 12 bytes: server nonce extension
// 16 bytes: Poly1305 MAC (crypto_box_ZEROBYTES - crypto_box_BOXZEROBYTES)
#define DNSCRYPT_REPLY_BOX_OFFSET \
(DNSCRYPT_MAGIC_HEADER_LEN + crypto_box_HALF_NONCEBYTES + \
crypto_box_HALF_NONCEBYTES)
/**
* Shared secret cache key length.
* secret key.
* 1 byte: ES_VERSION[1]
* 32 bytes: client crypto_box_PUBLICKEYBYTES
* 32 bytes: server crypto_box_SECRETKEYBYTES
*/
#define DNSCRYPT_SHARED_SECRET_KEY_LENGTH \
(1 + crypto_box_PUBLICKEYBYTES + crypto_box_SECRETKEYBYTES)
struct shared_secret_cache_key {
/** the hash table key */
uint8_t key[DNSCRYPT_SHARED_SECRET_KEY_LENGTH];
/** the hash table entry, data is uint8_t pointer of size crypto_box_BEFORENMBYTES which contains the shared secret. */
struct lruhash_entry entry;
};
struct nonce_cache_key {
/** the nonce used by the client */
uint8_t nonce[crypto_box_HALF_NONCEBYTES];
/** the client_magic used by the client, this is associated to 1 cert only */
uint8_t magic_query[DNSCRYPT_MAGIC_HEADER_LEN];
/** the client public key */
uint8_t client_publickey[crypto_box_PUBLICKEYBYTES];
/** the hash table entry, data is uint8_t */
struct lruhash_entry entry;
};
/**
* Generate a key suitable to find shared secret in slabhash.
* \param[in] key: a uint8_t pointer of size DNSCRYPT_SHARED_SECRET_KEY_LENGTH
* \param[in] esversion: The es version least significant byte.
* \param[in] pk: The public key of the client. uint8_t pointer of size
* crypto_box_PUBLICKEYBYTES.
* \param[in] sk: The secret key of the server matching the magic query number.
* uint8_t pointer of size crypto_box_SECRETKEYBYTES.
* \return the hash of the key.
*/
static uint32_t
dnsc_shared_secrets_cache_key(uint8_t* key,
uint8_t esversion,
uint8_t* pk,
uint8_t* sk)
{
key[0] = esversion;
memcpy(key + 1, pk, crypto_box_PUBLICKEYBYTES);
memcpy(key + 1 + crypto_box_PUBLICKEYBYTES, sk, crypto_box_SECRETKEYBYTES);
return hashlittle(key, DNSCRYPT_SHARED_SECRET_KEY_LENGTH, 0);
}
/**
* Inserts a shared secret into the shared_secrets_cache slabhash.
* The shared secret is copied so the caller can use it freely without caring
* about the cache entry being evicted or not.
* \param[in] cache: the slabhash in which to look for the key.
* \param[in] key: a uint8_t pointer of size DNSCRYPT_SHARED_SECRET_KEY_LENGTH
* which contains the key of the shared secret.
* \param[in] hash: the hash of the key.
* \param[in] nmkey: a uint8_t pointer of size crypto_box_BEFORENMBYTES which
* contains the shared secret.
*/
static void
dnsc_shared_secret_cache_insert(struct slabhash *cache,
uint8_t key[DNSCRYPT_SHARED_SECRET_KEY_LENGTH],
uint32_t hash,
uint8_t nmkey[crypto_box_BEFORENMBYTES])
{
struct shared_secret_cache_key* k =
(struct shared_secret_cache_key*)calloc(1, sizeof(*k));
uint8_t* d = malloc(crypto_box_BEFORENMBYTES);
if(!k || !d) {
free(k);
free(d);
return;
}
memcpy(d, nmkey, crypto_box_BEFORENMBYTES);
lock_rw_init(&k->entry.lock);
memcpy(k->key, key, DNSCRYPT_SHARED_SECRET_KEY_LENGTH);
k->entry.hash = hash;
k->entry.key = k;
k->entry.data = d;
slabhash_insert(cache,
hash, &k->entry,
d,
NULL);
}
/**
* Lookup a record in shared_secrets_cache.
* \param[in] cache: a pointer to shared_secrets_cache slabhash.
* \param[in] key: a uint8_t pointer of size DNSCRYPT_SHARED_SECRET_KEY_LENGTH
* containing the key to look for.
* \param[in] hash: a hash of the key.
* \return a pointer to the locked cache entry or NULL on failure.
*/
static struct lruhash_entry*
dnsc_shared_secrets_lookup(struct slabhash* cache,
uint8_t key[DNSCRYPT_SHARED_SECRET_KEY_LENGTH],
uint32_t hash)
{
return slabhash_lookup(cache, hash, key, 0);
}
/**
* Generate a key hash suitable to find a nonce in slabhash.
* \param[in] nonce: a uint8_t pointer of size crypto_box_HALF_NONCEBYTES
* \param[in] magic_query: a uint8_t pointer of size DNSCRYPT_MAGIC_HEADER_LEN
* \param[in] pk: The public key of the client. uint8_t pointer of size
* crypto_box_PUBLICKEYBYTES.
* \return the hash of the key.
*/
static uint32_t
dnsc_nonce_cache_key_hash(const uint8_t nonce[crypto_box_HALF_NONCEBYTES],
const uint8_t magic_query[DNSCRYPT_MAGIC_HEADER_LEN],
const uint8_t pk[crypto_box_PUBLICKEYBYTES])
{
uint32_t h = 0;
h = hashlittle(nonce, crypto_box_HALF_NONCEBYTES, h);
h = hashlittle(magic_query, DNSCRYPT_MAGIC_HEADER_LEN, h);
return hashlittle(pk, crypto_box_PUBLICKEYBYTES, h);
}
/**
* Inserts a nonce, magic_query, pk tuple into the nonces_cache slabhash.
* \param[in] cache: the slabhash in which to look for the key.
* \param[in] nonce: a uint8_t pointer of size crypto_box_HALF_NONCEBYTES
* \param[in] magic_query: a uint8_t pointer of size DNSCRYPT_MAGIC_HEADER_LEN
* \param[in] pk: The public key of the client. uint8_t pointer of size
* crypto_box_PUBLICKEYBYTES.
* \param[in] hash: the hash of the key.
*/
static void
dnsc_nonce_cache_insert(struct slabhash *cache,
const uint8_t nonce[crypto_box_HALF_NONCEBYTES],
const uint8_t magic_query[DNSCRYPT_MAGIC_HEADER_LEN],
const uint8_t pk[crypto_box_PUBLICKEYBYTES],
uint32_t hash)
{
struct nonce_cache_key* k =
(struct nonce_cache_key*)calloc(1, sizeof(*k));
if(!k) {
free(k);
return;
}
lock_rw_init(&k->entry.lock);
memcpy(k->nonce, nonce, crypto_box_HALF_NONCEBYTES);
memcpy(k->magic_query, magic_query, DNSCRYPT_MAGIC_HEADER_LEN);
memcpy(k->client_publickey, pk, crypto_box_PUBLICKEYBYTES);
k->entry.hash = hash;
k->entry.key = k;
k->entry.data = NULL;
slabhash_insert(cache,
hash, &k->entry,
NULL,
NULL);
}
/**
* Lookup a record in nonces_cache.
* \param[in] cache: the slabhash in which to look for the key.
* \param[in] nonce: a uint8_t pointer of size crypto_box_HALF_NONCEBYTES
* \param[in] magic_query: a uint8_t pointer of size DNSCRYPT_MAGIC_HEADER_LEN
* \param[in] pk: The public key of the client. uint8_t pointer of size
* crypto_box_PUBLICKEYBYTES.
* \param[in] hash: the hash of the key.
* \return a pointer to the locked cache entry or NULL on failure.
*/
static struct lruhash_entry*
dnsc_nonces_lookup(struct slabhash* cache,
const uint8_t nonce[crypto_box_HALF_NONCEBYTES],
const uint8_t magic_query[DNSCRYPT_MAGIC_HEADER_LEN],
const uint8_t pk[crypto_box_PUBLICKEYBYTES],
uint32_t hash)
{
struct nonce_cache_key k;
memset(&k, 0, sizeof(k));
k.entry.hash = hash;
memcpy(k.nonce, nonce, crypto_box_HALF_NONCEBYTES);
memcpy(k.magic_query, magic_query, DNSCRYPT_MAGIC_HEADER_LEN);
memcpy(k.client_publickey, pk, crypto_box_PUBLICKEYBYTES);
return slabhash_lookup(cache, hash, &k, 0);
}
/**
* Decrypt a query using the dnsccert that was found using dnsc_find_cert.
* The client nonce will be extracted from the encrypted query and stored in
* client_nonce, a shared secret will be computed and stored in nmkey and the
* buffer will be decrypted inplace.
* \param[in] env the dnscrypt environment.
* \param[in] cert the cert that matches this encrypted query.
* \param[in] client_nonce where the client nonce will be stored.
* \param[in] nmkey where the shared secret key will be written.
* \param[in] buffer the encrypted buffer.
* \return 0 on success.
*/
static int
dnscrypt_server_uncurve(struct dnsc_env* env,
const dnsccert *cert,
uint8_t client_nonce[crypto_box_HALF_NONCEBYTES],
uint8_t nmkey[crypto_box_BEFORENMBYTES],
struct sldns_buffer* buffer)
{
size_t len = sldns_buffer_limit(buffer);
uint8_t *const buf = sldns_buffer_begin(buffer);
uint8_t nonce[crypto_box_NONCEBYTES];
struct dnscrypt_query_header *query_header;
// shared secret cache
uint8_t key[DNSCRYPT_SHARED_SECRET_KEY_LENGTH];
struct lruhash_entry* entry;
uint32_t hash;
uint32_t nonce_hash;
if (len <= DNSCRYPT_QUERY_HEADER_SIZE) {
return -1;
}
query_header = (struct dnscrypt_query_header *)buf;
/* Detect replay attacks */
nonce_hash = dnsc_nonce_cache_key_hash(
query_header->nonce,
cert->magic_query,
query_header->publickey);
lock_basic_lock(&env->nonces_cache_lock);
entry = dnsc_nonces_lookup(
env->nonces_cache,
query_header->nonce,
cert->magic_query,
query_header->publickey,
nonce_hash);
if(entry) {
lock_rw_unlock(&entry->lock);
env->num_query_dnscrypt_replay++;
lock_basic_unlock(&env->nonces_cache_lock);
return -1;
}
dnsc_nonce_cache_insert(
env->nonces_cache,
query_header->nonce,
cert->magic_query,
query_header->publickey,
nonce_hash);
lock_basic_unlock(&env->nonces_cache_lock);
/* Find existing shared secret */
hash = dnsc_shared_secrets_cache_key(key,
cert->es_version[1],
query_header->publickey,
cert->keypair->crypt_secretkey);
entry = dnsc_shared_secrets_lookup(env->shared_secrets_cache,
key,
hash);
if(!entry) {
lock_basic_lock(&env->shared_secrets_cache_lock);
env->num_query_dnscrypt_secret_missed_cache++;
lock_basic_unlock(&env->shared_secrets_cache_lock);
if(cert->es_version[1] == 2) {
#ifdef USE_DNSCRYPT_XCHACHA20
if (crypto_box_curve25519xchacha20poly1305_beforenm(
nmkey, query_header->publickey,
cert->keypair->crypt_secretkey) != 0) {
return -1;
}
#else
return -1;
#endif
} else {
if (crypto_box_beforenm(nmkey,
query_header->publickey,
cert->keypair->crypt_secretkey) != 0) {
return -1;
}
}
// Cache the shared secret we just computed.
dnsc_shared_secret_cache_insert(env->shared_secrets_cache,
key,
hash,
nmkey);
} else {
/* copy shared secret and unlock entry */
memcpy(nmkey, entry->data, crypto_box_BEFORENMBYTES);
lock_rw_unlock(&entry->lock);
}
memcpy(nonce, query_header->nonce, crypto_box_HALF_NONCEBYTES);
memset(nonce + crypto_box_HALF_NONCEBYTES, 0, crypto_box_HALF_NONCEBYTES);
if(cert->es_version[1] == 2) {
#ifdef USE_DNSCRYPT_XCHACHA20
if (crypto_box_curve25519xchacha20poly1305_open_easy_afternm
(buf,
buf + DNSCRYPT_QUERY_BOX_OFFSET,
len - DNSCRYPT_QUERY_BOX_OFFSET, nonce,
nmkey) != 0) {
return -1;
}
#else
return -1;
#endif
} else {
if (crypto_box_open_easy_afternm
(buf,
buf + DNSCRYPT_QUERY_BOX_OFFSET,
len - DNSCRYPT_QUERY_BOX_OFFSET, nonce,
nmkey) != 0) {
return -1;
}
}
len -= DNSCRYPT_QUERY_HEADER_SIZE;
while (*sldns_buffer_at(buffer, --len) == 0)
;
if (*sldns_buffer_at(buffer, len) != 0x80) {
return -1;
}
memcpy(client_nonce, nonce, crypto_box_HALF_NONCEBYTES);
sldns_buffer_set_position(buffer, 0);
sldns_buffer_set_limit(buffer, len);
return 0;
}
/**
* Add random padding to a buffer, according to a client nonce.
* The length has to depend on the query in order to avoid reply attacks.
*
* @param buf a buffer
* @param len the initial size of the buffer
* @param max_len the maximum size
* @param nonce a nonce, made of the client nonce repeated twice
* @param secretkey
* @return the new size, after padding
*/
size_t
dnscrypt_pad(uint8_t *buf, const size_t len, const size_t max_len,
const uint8_t *nonce, const uint8_t *secretkey)
{
uint8_t *buf_padding_area = buf + len;
size_t padded_len;
uint32_t rnd;
// no padding
if (max_len < len + DNSCRYPT_MIN_PAD_LEN)
return len;
assert(nonce[crypto_box_HALF_NONCEBYTES] == nonce[0]);
crypto_stream((unsigned char *)&rnd, (unsigned long long)sizeof(rnd), nonce,
secretkey);
padded_len =
len + DNSCRYPT_MIN_PAD_LEN + rnd % (max_len - len -
DNSCRYPT_MIN_PAD_LEN + 1);
padded_len += DNSCRYPT_BLOCK_SIZE - padded_len % DNSCRYPT_BLOCK_SIZE;
if (padded_len > max_len)
padded_len = max_len;
memset(buf_padding_area, 0, padded_len - len);
*buf_padding_area = 0x80;
return padded_len;
}
uint64_t
dnscrypt_hrtime(void)
{
struct timeval tv;
uint64_t ts = (uint64_t)0U;
int ret;
ret = gettimeofday(&tv, NULL);
if (ret == 0) {
ts = (uint64_t)tv.tv_sec * 1000000U + (uint64_t)tv.tv_usec;
} else {
log_err("gettimeofday: %s", strerror(errno));
}
return ts;
}
/**
* Add the server nonce part to once.
* The nonce is made half of client nonce and the seconf half of the server
* nonce, both of them of size crypto_box_HALF_NONCEBYTES.
* \param[in] nonce: a uint8_t* of size crypto_box_NONCEBYTES
*/
static void
add_server_nonce(uint8_t *nonce)
{
uint64_t ts;
uint64_t tsn;
uint32_t suffix;
ts = dnscrypt_hrtime();
// TODO? dnscrypt-wrapper does some logic with context->nonce_ts_last
// unclear if we really need it, so skipping it for now.
tsn = (ts << 10) | (randombytes_random() & 0x3ff);
#if (BYTE_ORDER == LITTLE_ENDIAN)
tsn =
(((uint64_t)htonl((uint32_t)tsn)) << 32) | htonl((uint32_t)(tsn >> 32));
#endif
memcpy(nonce + crypto_box_HALF_NONCEBYTES, &tsn, 8);
suffix = randombytes_random();
memcpy(nonce + crypto_box_HALF_NONCEBYTES + 8, &suffix, 4);
}
/**
* Encrypt a reply using the dnsccert that was used with the query.
* The client nonce will be extracted from the encrypted query and stored in
* The buffer will be encrypted inplace.
* \param[in] cert the dnsccert that matches this encrypted query.
* \param[in] client_nonce client nonce used during the query
* \param[in] nmkey shared secret key used during the query.
* \param[in] buffer the buffer where to encrypt the reply.
* \param[in] udp if whether or not it is a UDP query.
* \param[in] max_udp_size configured max udp size.
* \return 0 on success.
*/
static int
dnscrypt_server_curve(const dnsccert *cert,
uint8_t client_nonce[crypto_box_HALF_NONCEBYTES],
uint8_t nmkey[crypto_box_BEFORENMBYTES],
struct sldns_buffer* buffer,
uint8_t udp,
size_t max_udp_size)
{
size_t dns_reply_len = sldns_buffer_limit(buffer);
size_t max_len = dns_reply_len + DNSCRYPT_MAX_PADDING \
+ DNSCRYPT_REPLY_HEADER_SIZE;
size_t max_reply_size = max_udp_size - 20U - 8U;
uint8_t nonce[crypto_box_NONCEBYTES];
uint8_t *boxed;
uint8_t *const buf = sldns_buffer_begin(buffer);
size_t len = sldns_buffer_limit(buffer);
if(udp){
if (max_len > max_reply_size)
max_len = max_reply_size;
}
memcpy(nonce, client_nonce, crypto_box_HALF_NONCEBYTES);
memcpy(nonce + crypto_box_HALF_NONCEBYTES, client_nonce,
crypto_box_HALF_NONCEBYTES);
boxed = buf + DNSCRYPT_REPLY_BOX_OFFSET;
memmove(boxed + crypto_box_MACBYTES, buf, len);
len = dnscrypt_pad(boxed + crypto_box_MACBYTES, len,
max_len - DNSCRYPT_REPLY_HEADER_SIZE, nonce,
cert->keypair->crypt_secretkey);
sldns_buffer_set_at(buffer,
DNSCRYPT_REPLY_BOX_OFFSET - crypto_box_BOXZEROBYTES,
0, crypto_box_ZEROBYTES);
// add server nonce extension
add_server_nonce(nonce);
if(cert->es_version[1] == 2) {
#ifdef USE_DNSCRYPT_XCHACHA20
if (crypto_box_curve25519xchacha20poly1305_easy_afternm
(boxed, boxed + crypto_box_MACBYTES, len, nonce, nmkey) != 0) {
return -1;
}
#else
return -1;
#endif
} else {
if (crypto_box_easy_afternm
(boxed, boxed + crypto_box_MACBYTES, len, nonce, nmkey) != 0) {
return -1;
}
}
sldns_buffer_write_at(buffer,
0,
DNSCRYPT_MAGIC_RESPONSE,
DNSCRYPT_MAGIC_HEADER_LEN);
sldns_buffer_write_at(buffer,
DNSCRYPT_MAGIC_HEADER_LEN,
nonce,
crypto_box_NONCEBYTES);
sldns_buffer_set_limit(buffer, len + DNSCRYPT_REPLY_HEADER_SIZE);
return 0;
}
/**
* Read the content of fname into buf.
* \param[in] fname name of the file to read.
* \param[in] buf the buffer in which to read the content of the file.
* \param[in] count number of bytes to read.
* \return 0 on success.
*/
static int
dnsc_read_from_file(char *fname, char *buf, size_t count)
{
int fd;
fd = open(fname, O_RDONLY);
if (fd == -1) {
return -1;
}
if (read(fd, buf, count) != (ssize_t)count) {
close(fd);
return -2;
}
close(fd);
return 0;
}
/**
* Given an absolute path on the original root, returns the absolute path
* within the chroot. If chroot is disabled, the path is not modified.
* No char * is malloced so there is no need to free this.
* \param[in] cfg the configuration.
* \param[in] path the path from the original root.
* \return the path from inside the chroot.
*/
static char *
dnsc_chroot_path(struct config_file *cfg, char *path)
{
char *nm;
nm = path;
if(cfg->chrootdir && cfg->chrootdir[0] && strncmp(nm,
cfg->chrootdir, strlen(cfg->chrootdir)) == 0)
nm += strlen(cfg->chrootdir);
return nm;
}
/**
* Parse certificates files provided by the configuration and load them into
* dnsc_env.
* \param[in] env the dnsc_env structure to load the certs into.
* \param[in] cfg the configuration.
* \return the number of certificates loaded.
*/
static int
dnsc_parse_certs(struct dnsc_env *env, struct config_file *cfg)
{
struct config_strlist *head, *head2;
size_t signed_cert_id;
size_t rotated_cert_id;
char *nm;
env->signed_certs_count = 0U;
env->rotated_certs_count = 0U;
for (head = cfg->dnscrypt_provider_cert; head; head = head->next) {
env->signed_certs_count++;
}
for (head = cfg->dnscrypt_provider_cert_rotated; head; head = head->next) {
env->rotated_certs_count++;
}
env->signed_certs = sodium_allocarray(env->signed_certs_count,
sizeof *env->signed_certs);
env->rotated_certs = sodium_allocarray(env->rotated_certs_count,
sizeof env->signed_certs);
signed_cert_id = 0U;
rotated_cert_id = 0U;
for(head = cfg->dnscrypt_provider_cert; head; head = head->next, signed_cert_id++) {
nm = dnsc_chroot_path(cfg, head->str);
if(dnsc_read_from_file(
nm,
(char *)(env->signed_certs + signed_cert_id),
sizeof(struct SignedCert)) != 0) {
fatal_exit("dnsc_parse_certs: failed to load %s: %s", head->str, strerror(errno));
}
for(head2 = cfg->dnscrypt_provider_cert_rotated; head2; head2 = head2->next) {
if(strcmp(head->str, head2->str) == 0) {
*(env->rotated_certs + rotated_cert_id) = env->signed_certs + signed_cert_id;
rotated_cert_id++;
verbose(VERB_OPS, "Cert %s is rotated and will not be distributed via DNS", head->str);
break;
}
}
verbose(VERB_OPS, "Loaded cert %s", head->str);
}
return signed_cert_id;
}
/**
* Helper function to convert a binary key into a printable fingerprint.
* \param[in] fingerprint the buffer in which to write the printable key.
* \param[in] key the key to convert.
*/
void
dnsc_key_to_fingerprint(char fingerprint[80U], const uint8_t * const key)
{
const size_t fingerprint_size = 80U;
size_t fingerprint_pos = (size_t) 0U;
size_t key_pos = (size_t) 0U;
for (;;) {
assert(fingerprint_size > fingerprint_pos);
snprintf(&fingerprint[fingerprint_pos],
fingerprint_size - fingerprint_pos, "%02X%02X",
key[key_pos], key[key_pos + 1U]);
key_pos += 2U;
if (key_pos >= crypto_box_PUBLICKEYBYTES) {
break;
}
fingerprint[fingerprint_pos + 4U] = ':';
fingerprint_pos += 5U;
}
}
/**
* Find the cert matching a DNSCrypt query.
* \param[in] dnscenv The DNSCrypt environment, which contains the list of certs
* supported by the server.
* \param[in] buffer The encrypted DNS query.
* \return a dnsccert * if we found a cert matching the magic_number of the
* query, NULL otherwise.
*/
static const dnsccert *
dnsc_find_cert(struct dnsc_env* dnscenv, struct sldns_buffer* buffer)
{
const dnsccert *certs = dnscenv->certs;
struct dnscrypt_query_header *dnscrypt_header;
size_t i;
if (sldns_buffer_limit(buffer) < DNSCRYPT_QUERY_HEADER_SIZE) {
return NULL;
}
dnscrypt_header = (struct dnscrypt_query_header *)sldns_buffer_begin(buffer);
for (i = 0U; i < dnscenv->signed_certs_count; i++) {
if (memcmp(certs[i].magic_query, dnscrypt_header->magic_query,
DNSCRYPT_MAGIC_HEADER_LEN) == 0) {
return &certs[i];
}
}
return NULL;
}
/**
* Insert local-zone and local-data into configuration.
* In order to be able to serve certs over TXT, we can reuse the local-zone and
* local-data config option. The zone and qname are infered from the
* provider_name and the content of the TXT record from the certificate content.
* returns the number of certificate TXT record that were loaded.
* < 0 in case of error.
*/
static int
dnsc_load_local_data(struct dnsc_env* dnscenv, struct config_file *cfg)
{
size_t i, j;
// Insert 'local-zone: "2.dnscrypt-cert.example.com" deny'
if(!cfg_str2list_insert(&cfg->local_zones,
strdup(dnscenv->provider_name),
strdup("deny"))) {
log_err("Could not load dnscrypt local-zone: %s deny",
dnscenv->provider_name);
return -1;
}
// Add local data entry of type:
// 2.dnscrypt-cert.example.com 86400 IN TXT "DNSC......"
for(i=0; i<dnscenv->signed_certs_count; i++) {
const char *ttl_class_type = " 86400 IN TXT \"";
int rotated_cert = 0;
uint32_t serial;
struct SignedCert *cert = dnscenv->signed_certs + i;
// Check if the certificate is being rotated and should not be published
for(j=0; j<dnscenv->rotated_certs_count; j++){
if(cert == dnscenv->rotated_certs[j]) {
rotated_cert = 1;
break;
}
}
memcpy(&serial, cert->serial, sizeof serial);
serial = htonl(serial);
if(rotated_cert) {
verbose(VERB_OPS,
"DNSCrypt: not adding cert with serial #%"
PRIu32
" to local-data as it is rotated",
serial
);
continue;
}
uint16_t rrlen = strlen(dnscenv->provider_name) +
strlen(ttl_class_type) +
4 * sizeof(struct SignedCert) + // worst case scenario
1 + // trailing double quote
1;
char *rr = malloc(rrlen);
if(!rr) {
log_err("Could not allocate memory");
return -2;
}
snprintf(rr, rrlen - 1, "%s 86400 IN TXT \"", dnscenv->provider_name);
for(j=0; j<sizeof(struct SignedCert); j++) {
int c = (int)*((const uint8_t *) cert + j);
if (isprint(c) && c != '"' && c != '\\') {
snprintf(rr + strlen(rr), rrlen - 1 - strlen(rr), "%c", c);
} else {
snprintf(rr + strlen(rr), rrlen - 1 - strlen(rr), "\\%03d", c);
}
}
verbose(VERB_OPS,
"DNSCrypt: adding cert with serial #%"
PRIu32
" to local-data to config: %s",
serial, rr
);
snprintf(rr + strlen(rr), rrlen - 1 - strlen(rr), "\"");
cfg_strlist_insert(&cfg->local_data, strdup(rr));
free(rr);
}
return dnscenv->signed_certs_count;
}
static const char *
key_get_es_version(uint8_t version[2])
{
struct es_version {
uint8_t es_version[2];
const char *name;
};
struct es_version es_versions[] = {
{{0x00, 0x01}, "X25519-XSalsa20Poly1305"},
{{0x00, 0x02}, "X25519-XChacha20Poly1305"},
};
int i;
for(i=0; i < (int)sizeof(es_versions); i++){
if(es_versions[i].es_version[0] == version[0] &&
es_versions[i].es_version[1] == version[1]){
return es_versions[i].name;
}
}
return NULL;
}
/**
* Parse the secret key files from `dnscrypt-secret-key` config and populates
* a list of dnsccert with es_version, magic number and secret/public keys
* supported by dnscrypt listener.
* \param[in] env The dnsc_env structure which will hold the keypairs.
* \param[in] cfg The config with the secret key file paths.
*/
static int
dnsc_parse_keys(struct dnsc_env *env, struct config_file *cfg)
{
struct config_strlist *head;
size_t cert_id, keypair_id;
size_t c;
char *nm;
env->keypairs_count = 0U;
for (head = cfg->dnscrypt_secret_key; head; head = head->next) {
env->keypairs_count++;
}
env->keypairs = sodium_allocarray(env->keypairs_count,
sizeof *env->keypairs);
env->certs = sodium_allocarray(env->signed_certs_count,
sizeof *env->certs);
cert_id = 0U;
keypair_id = 0U;
for(head = cfg->dnscrypt_secret_key; head; head = head->next, keypair_id++) {
char fingerprint[80];
int found_cert = 0;
KeyPair *current_keypair = &env->keypairs[keypair_id];
nm = dnsc_chroot_path(cfg, head->str);
if(dnsc_read_from_file(
nm,
(char *)(current_keypair->crypt_secretkey),
crypto_box_SECRETKEYBYTES) != 0) {
fatal_exit("dnsc_parse_keys: failed to load %s: %s", head->str, strerror(errno));
}
verbose(VERB_OPS, "Loaded key %s", head->str);
if (crypto_scalarmult_base(current_keypair->crypt_publickey,
current_keypair->crypt_secretkey) != 0) {
fatal_exit("dnsc_parse_keys: could not generate public key from %s", head->str);
}
dnsc_key_to_fingerprint(fingerprint, current_keypair->crypt_publickey);
verbose(VERB_OPS, "Crypt public key fingerprint for %s: %s", head->str, fingerprint);
// find the cert matching this key
for(c = 0; c < env->signed_certs_count; c++) {
if(memcmp(current_keypair->crypt_publickey,
env->signed_certs[c].server_publickey,
crypto_box_PUBLICKEYBYTES) == 0) {
dnsccert *current_cert = &env->certs[cert_id++];
found_cert = 1;
current_cert->keypair = current_keypair;
memcpy(current_cert->magic_query,
env->signed_certs[c].magic_query,
sizeof env->signed_certs[c].magic_query);
memcpy(current_cert->es_version,
env->signed_certs[c].version_major,
sizeof env->signed_certs[c].version_major
);
dnsc_key_to_fingerprint(fingerprint,
current_cert->keypair->crypt_publickey);
verbose(VERB_OPS, "Crypt public key fingerprint for %s: %s",
head->str, fingerprint);
verbose(VERB_OPS, "Using %s",
key_get_es_version(current_cert->es_version));
#ifndef USE_DNSCRYPT_XCHACHA20
if (current_cert->es_version[1] == 0x02) {
fatal_exit("Certificate for XChacha20 but libsodium does not support it.");
}
#endif
}
}
if (!found_cert) {
fatal_exit("dnsc_parse_keys: could not match certificate for key "
"%s. Unable to determine ES version.",
head->str);
}
}
return cert_id;
}
/**
* #########################################################
* ############# Publicly accessible functions #############
* #########################################################
*/
int
dnsc_handle_curved_request(struct dnsc_env* dnscenv,
struct comm_reply* repinfo)
{
struct comm_point* c = repinfo->c;
repinfo->is_dnscrypted = 0;
if( !c->dnscrypt ) {
return 1;
}
// Attempt to decrypt the query. If it is not crypted, we may still need
// to serve the certificate.
verbose(VERB_ALGO, "handle request called on DNSCrypt socket");
if ((repinfo->dnsc_cert = dnsc_find_cert(dnscenv, c->buffer)) != NULL) {
if(dnscrypt_server_uncurve(dnscenv,
repinfo->dnsc_cert,
repinfo->client_nonce,
repinfo->nmkey,
c->buffer) != 0){
verbose(VERB_ALGO, "dnscrypt: Failed to uncurve");
comm_point_drop_reply(repinfo);
return 0;
}
repinfo->is_dnscrypted = 1;
sldns_buffer_rewind(c->buffer);
}
return 1;
}
int
dnsc_handle_uncurved_request(struct comm_reply *repinfo)
{
if(!repinfo->c->dnscrypt) {
return 1;
}
sldns_buffer_copy(repinfo->c->dnscrypt_buffer, repinfo->c->buffer);
if(!repinfo->is_dnscrypted) {
return 1;
}
if(dnscrypt_server_curve(repinfo->dnsc_cert,
repinfo->client_nonce,
repinfo->nmkey,
repinfo->c->dnscrypt_buffer,
repinfo->c->type == comm_udp,
repinfo->max_udp_size) != 0){
verbose(VERB_ALGO, "dnscrypt: Failed to curve cached missed answer");
comm_point_drop_reply(repinfo);
return 0;
}
return 1;
}
struct dnsc_env *
dnsc_create(void)
{
struct dnsc_env *env;
if (sodium_init() == -1) {
fatal_exit("dnsc_create: could not initialize libsodium.");
}
env = (struct dnsc_env *) calloc(1, sizeof(struct dnsc_env));
lock_basic_init(&env->shared_secrets_cache_lock);
lock_protect(&env->shared_secrets_cache_lock,
&env->num_query_dnscrypt_secret_missed_cache,
sizeof(env->num_query_dnscrypt_secret_missed_cache));
lock_basic_init(&env->nonces_cache_lock);
lock_protect(&env->nonces_cache_lock,
&env->nonces_cache,
sizeof(env->nonces_cache));
lock_protect(&env->nonces_cache_lock,
&env->num_query_dnscrypt_replay,
sizeof(env->num_query_dnscrypt_replay));
return env;
}
int
dnsc_apply_cfg(struct dnsc_env *env, struct config_file *cfg)
{
if(dnsc_parse_certs(env, cfg) <= 0) {
fatal_exit("dnsc_apply_cfg: no cert file loaded");
}
if(dnsc_parse_keys(env, cfg) <= 0) {
fatal_exit("dnsc_apply_cfg: no key file loaded");
}
randombytes_buf(env->hash_key, sizeof env->hash_key);
env->provider_name = cfg->dnscrypt_provider;
if(dnsc_load_local_data(env, cfg) <= 0) {
fatal_exit("dnsc_apply_cfg: could not load local data");
}
env->shared_secrets_cache = slabhash_create(
cfg->dnscrypt_shared_secret_cache_slabs,
HASH_DEFAULT_STARTARRAY,
cfg->dnscrypt_shared_secret_cache_size,
dnsc_shared_secrets_sizefunc,
dnsc_shared_secrets_compfunc,
dnsc_shared_secrets_delkeyfunc,
dnsc_shared_secrets_deldatafunc,
NULL
);
if(!env->shared_secrets_cache){
fatal_exit("dnsc_apply_cfg: could not create shared secrets cache.");
}
env->nonces_cache = slabhash_create(
cfg->dnscrypt_nonce_cache_slabs,
HASH_DEFAULT_STARTARRAY,
cfg->dnscrypt_nonce_cache_size,
dnsc_nonces_sizefunc,
dnsc_nonces_compfunc,
dnsc_nonces_delkeyfunc,
dnsc_nonces_deldatafunc,
NULL
);
return 0;
}
void
dnsc_delete(struct dnsc_env *env)
{
if(!env) {
return;
}
verbose(VERB_OPS, "DNSCrypt: Freeing environment.");
sodium_free(env->signed_certs);
sodium_free(env->rotated_certs);
sodium_free(env->certs);
sodium_free(env->keypairs);
slabhash_delete(env->shared_secrets_cache);
slabhash_delete(env->nonces_cache);
lock_basic_destroy(&env->shared_secrets_cache_lock);
lock_basic_destroy(&env->nonces_cache_lock);
free(env);
}
/**
* #########################################################
* ############# Shared secrets cache functions ############
* #########################################################
*/
size_t
dnsc_shared_secrets_sizefunc(void *k, void* ATTR_UNUSED(d))
{
struct shared_secret_cache_key* ssk = (struct shared_secret_cache_key*)k;
size_t key_size = sizeof(struct shared_secret_cache_key)
+ lock_get_mem(&ssk->entry.lock);
size_t data_size = crypto_box_BEFORENMBYTES;
(void)ssk; /* otherwise ssk is unused if no threading, or fixed locksize */
return key_size + data_size;
}
int
dnsc_shared_secrets_compfunc(void *m1, void *m2)
{
return sodium_memcmp(m1, m2, DNSCRYPT_SHARED_SECRET_KEY_LENGTH);
}
void
dnsc_shared_secrets_delkeyfunc(void *k, void* ATTR_UNUSED(arg))
{
struct shared_secret_cache_key* ssk = (struct shared_secret_cache_key*)k;
lock_rw_destroy(&ssk->entry.lock);
free(ssk);
}
void
dnsc_shared_secrets_deldatafunc(void* d, void* ATTR_UNUSED(arg))
{
uint8_t* data = (uint8_t*)d;
free(data);
}
/**
* #########################################################
* ############### Nonces cache functions ##################
* #########################################################
*/
size_t
dnsc_nonces_sizefunc(void *k, void* ATTR_UNUSED(d))
{
struct nonce_cache_key* nk = (struct nonce_cache_key*)k;
size_t key_size = sizeof(struct nonce_cache_key)
+ lock_get_mem(&nk->entry.lock);
(void)nk; /* otherwise ssk is unused if no threading, or fixed locksize */
return key_size;
}
int
dnsc_nonces_compfunc(void *m1, void *m2)
{
struct nonce_cache_key *k1 = m1, *k2 = m2;
return
sodium_memcmp(
k1->nonce,
k2->nonce,
crypto_box_HALF_NONCEBYTES) != 0 ||
sodium_memcmp(
k1->magic_query,
k2->magic_query,
DNSCRYPT_MAGIC_HEADER_LEN) != 0 ||
sodium_memcmp(
k1->client_publickey, k2->client_publickey,
crypto_box_PUBLICKEYBYTES) != 0;
}
void
dnsc_nonces_delkeyfunc(void *k, void* ATTR_UNUSED(arg))
{
struct nonce_cache_key* nk = (struct nonce_cache_key*)k;
lock_rw_destroy(&nk->entry.lock);
free(nk);
}
void
dnsc_nonces_deldatafunc(void* ATTR_UNUSED(d), void* ATTR_UNUSED(arg))
{
return;
}