/* * daemon/remote.c - remote control for the unbound daemon. * * Copyright (c) 2008, NLnet Labs. All rights reserved. * * This software is open source. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of the NLNET LABS nor the names of its contributors may * be used to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /** * \file * * This file contains the remote control functionality for the daemon. * The remote control can be performed using either the commandline * unbound-control tool, or a SSLv3/TLS capable web browser. * The channel is secured using SSLv3 or TLSv1, and certificates. * Both the server and the client(control tool) have their own keys. */ #include "config.h" #include "daemon/remote.h" #include "daemon/worker.h" #include "daemon/daemon.h" #include "daemon/stats.h" #include "util/log.h" #include "util/config_file.h" #include "util/net_help.h" #include "util/module.h" #include "services/listen_dnsport.h" #include "services/cache/rrset.h" #include "services/mesh.h" #include "util/storage/slabhash.h" #include "util/fptr_wlist.h" #ifdef HAVE_SYS_TYPES_H # include #endif #ifdef HAVE_NETDB_H #include #endif /* just for portability */ #ifdef SQ #undef SQ #endif /** what to put on statistics lines between var and value, ": " or "=" */ #define SQ "=" /** if true, inhibits a lot of =0 lines from the stats output */ static const int inhibit_zero = 1; /** log ssl crypto err */ static void log_crypto_err(const char* str) { /* error:[error code]:[library name]:[function name]:[reason string] */ char buf[128]; unsigned long e; ERR_error_string_n(ERR_get_error(), buf, sizeof(buf)); log_err("%s crypto %s", str, buf); while( (e=ERR_get_error()) ) { ERR_error_string_n(e, buf, sizeof(buf)); log_err("and additionally crypto %s", buf); } } /** subtract timers and the values do not overflow or become negative */ static void timeval_subtract(struct timeval* d, struct timeval* end, struct timeval* start) { #ifndef S_SPLINT_S d->tv_sec = end->tv_sec - start->tv_sec; while(end->tv_usec < start->tv_usec) { end->tv_usec += 1000000; d->tv_sec--; } d->tv_usec = end->tv_usec - start->tv_usec; #endif } /** divide sum of timers to get average */ static void timeval_divide(struct timeval* avg, struct timeval* sum, size_t d) { #ifndef S_SPLINT_S size_t leftover; if(d == 0) { avg->tv_sec = 0; avg->tv_usec = 0; return; } avg->tv_sec = sum->tv_sec / d; avg->tv_usec = sum->tv_usec / d; /* handle fraction from seconds divide */ leftover = sum->tv_sec - avg->tv_sec*d; avg->tv_usec += (leftover*1000000)/d; #endif } struct daemon_remote* daemon_remote_create(struct worker* worker) { char* s_cert; char* s_key; struct config_file* cfg = worker->daemon->cfg; struct daemon_remote* rc = (struct daemon_remote*)calloc(1, sizeof(*rc)); if(!rc) { log_err("out of memory in daemon_remote_create"); return NULL; } rc->worker = worker; rc->max_active = 10; if(!cfg->remote_control_enable) { rc->ctx = NULL; return rc; } rc->ctx = SSL_CTX_new(SSLv23_server_method()); if(!rc->ctx) { log_crypto_err("could not SSL_CTX_new"); free(rc); return NULL; } /* no SSLv2 because has defects */ if(!(SSL_CTX_set_options(rc->ctx, SSL_OP_NO_SSLv2) & SSL_OP_NO_SSLv2)){ log_crypto_err("could not set SSL_OP_NO_SSLv2"); daemon_remote_delete(rc); return NULL; } s_cert = cfg->server_cert_file; s_key = cfg->server_key_file; if(cfg->chrootdir && cfg->chrootdir[0]) { if(strncmp(s_cert, cfg->chrootdir, strlen(cfg->chrootdir))==0) s_cert += strlen(cfg->chrootdir); if(strncmp(s_key, cfg->chrootdir, strlen(cfg->chrootdir))==0) s_key += strlen(cfg->chrootdir); } verbose(VERB_ALGO, "setup SSL certificates"); if (!SSL_CTX_use_certificate_file(rc->ctx,s_cert,SSL_FILETYPE_PEM) || !SSL_CTX_use_PrivateKey_file(rc->ctx,s_key,SSL_FILETYPE_PEM) || !SSL_CTX_check_private_key(rc->ctx)) { log_crypto_err("Error setting up SSL_CTX key and cert"); daemon_remote_delete(rc); return NULL; } if(!SSL_CTX_load_verify_locations(rc->ctx, s_cert, NULL)) { log_crypto_err("Error setting up SSL_CTX verify locations"); daemon_remote_delete(rc); return NULL; } SSL_CTX_set_client_CA_list(rc->ctx, SSL_load_client_CA_file(s_cert)); SSL_CTX_set_verify(rc->ctx, SSL_VERIFY_PEER, NULL); return rc; } void daemon_remote_delete(struct daemon_remote* rc) { struct rc_state* p, *np; if(!rc) return; /* but do not close the ports */ listen_list_delete(rc->accept_list); /* do close these sockets */ p = rc->busy_list; while(p) { np = p->next; if(p->ssl) SSL_free(p->ssl); comm_point_delete(p->c); free(p); p = np; } if(rc->ctx) { SSL_CTX_free(rc->ctx); } free(rc); } /** * Add and open a new control port * @param ip: ip str * @param nr: port nr * @param list: list head * @param noproto_is_err: if lack of protocol support is an error. * @return false on failure. */ static int add_open(char* ip, int nr, struct listen_port** list, int noproto_is_err) { struct addrinfo hints; struct addrinfo* res; struct listen_port* n; int noproto; int fd, r; char port[15]; snprintf(port, sizeof(port), "%d", nr); port[sizeof(port)-1]=0; memset(&hints, 0, sizeof(hints)); hints.ai_socktype = SOCK_STREAM; hints.ai_flags = AI_PASSIVE | AI_NUMERICHOST; if((r = getaddrinfo(ip, port, &hints, &res)) != 0 || !res) { log_err("control interface %s:%s getaddrinfo: %s %s", ip?ip:"default", port, gai_strerror(r), #ifdef EAI_SYSTEM r==EAI_SYSTEM?(char*)strerror(errno):"" #else "" #endif ); } /* open fd */ fd = create_tcp_accept_sock(res, 1, &noproto); freeaddrinfo(res); if(fd == -1 && noproto) { if(!noproto_is_err) return 1; /* return success, but do nothing */ log_err("cannot open control interface %s %d : " "protocol not supported", ip, nr); return 0; } if(fd == -1) { log_err("cannot open control interface %s %d", ip, nr); return 0; } /* alloc */ n = (struct listen_port*)calloc(1, sizeof(*n)); if(!n) { close(fd); log_err("out of memory"); return 0; } n->next = *list; *list = n; n->fd = fd; return 1; } struct listen_port* daemon_remote_open_ports(struct config_file* cfg) { struct listen_port* l = NULL; log_assert(cfg->remote_control_enable && cfg->control_port); if(cfg->control_ifs) { struct config_strlist* p = cfg->control_ifs; for(p = cfg->control_ifs; p; p = p->next) { if(!add_open(p->str, cfg->control_port, &l, 1)) { listening_ports_free(l); return NULL; } } } else { /* defaults */ if(cfg->do_ip6 && !add_open("::1", cfg->control_port, &l, 0)) { listening_ports_free(l); return NULL; } if(cfg->do_ip4 && !add_open("127.0.0.1", cfg->control_port, &l, 1)) { listening_ports_free(l); return NULL; } } return l; } /** open accept commpoint */ static int accept_open(struct daemon_remote* rc, int fd) { struct listen_list* n = (struct listen_list*)malloc(sizeof(*n)); if(!n) { log_err("out of memory"); return 0; } n->next = rc->accept_list; rc->accept_list = n; /* open commpt */ n->com = comm_point_create_raw(rc->worker->base, fd, 0, &remote_accept_callback, rc); if(!n->com) return 0; /* keep this port open, its fd is kept in the rc portlist */ n->com->do_not_close = 1; return 1; } int daemon_remote_open_accept(struct daemon_remote* rc, struct listen_port* ports) { struct listen_port* p; for(p = ports; p; p = p->next) { if(!accept_open(rc, p->fd)) { log_err("could not create accept comm point"); return 0; } } return 1; } int remote_accept_callback(struct comm_point* c, void* arg, int err, struct comm_reply* ATTR_UNUSED(rep)) { struct daemon_remote* rc = (struct daemon_remote*)arg; struct sockaddr_storage addr; socklen_t addrlen; int newfd; struct rc_state* n; if(err != NETEVENT_NOERROR) { log_err("error %d on remote_accept_callback", err); return 0; } /* perform the accept */ newfd = comm_point_perform_accept(c, &addr, &addrlen); if(newfd == -1) return 0; /* create new commpoint unless we are servicing already */ if(rc->active >= rc->max_active) { log_warn("drop incoming remote control: too many connections"); comm_point_stop_listening(c); close(newfd); return 0; } /* setup commpoint to service the remote control command */ n = (struct rc_state*)calloc(1, sizeof(*n)); if(!n) { log_err("out of memory"); close(newfd); return 0; } /* start in reading state */ n->c = comm_point_create_raw(rc->worker->base, newfd, 0, &remote_control_callback, n); if(!n->c) { log_err("out of memory"); close(newfd); free(n); return 0; } log_addr(VERB_QUERY, "new control connection from", &addr, addrlen); n->c->do_not_close = 0; comm_point_stop_listening(n->c); comm_point_start_listening(n->c, -1, REMOTE_CONTROL_TCP_TIMEOUT); memcpy(&n->c->repinfo.addr, &addr, addrlen); n->c->repinfo.addrlen = addrlen; n->shake_state = rc_hs_read; n->ssl = SSL_new(rc->ctx); if(!n->ssl) { log_crypto_err("could not SSL_new"); close(newfd); free(n); return 0; } SSL_set_accept_state(n->ssl); (void)SSL_set_mode(n->ssl, SSL_MODE_AUTO_RETRY); if(!SSL_set_fd(n->ssl, newfd)) { log_crypto_err("could not SSL_set_fd"); close(newfd); SSL_free(n->ssl); free(n); return 0; } n->rc = rc; n->next = rc->busy_list; rc->busy_list = n; rc->active ++; /* perform the first nonblocking read already, for windows, * so it can return wouldblock. could be faster too. */ (void)remote_control_callback(n->c, n, NETEVENT_NOERROR, NULL); return 0; } /** delete from list */ static void state_list_remove_elem(struct rc_state** list, struct comm_point* c) { while(*list) { if( (*list)->c == c) { *list = (*list)->next; return; } list = &(*list)->next; } } /** decrease active count and remove commpoint from busy list */ static void clean_point(struct daemon_remote* rc, struct rc_state* s) { state_list_remove_elem(&rc->busy_list, s->c); rc->active --; if(s->ssl) { SSL_shutdown(s->ssl); SSL_free(s->ssl); } comm_point_delete(s->c); free(s); } /** print fixed line over the ssl connection */ static int ssl_print_text(SSL* ssl, const char* text) { int r; ERR_clear_error(); if((r=SSL_write(ssl, text, (int)strlen(text))) <= 0) { if(SSL_get_error(ssl, r) == SSL_ERROR_ZERO_RETURN) { verbose(VERB_QUERY, "warning, in SSL_write, peer " "closed connection"); return 0; } log_crypto_err("could not SSL_write"); return 0; } return 1; } /** print text over the ssl connection */ static int ssl_print_vmsg(SSL* ssl, const char* format, va_list args) { char msg[1024]; vsnprintf(msg, sizeof(msg), format, args); return ssl_print_text(ssl, msg); } /** declare for printf format checking by gcc * @param ssl: the SSL connection to print to. Blocking. * @param format: printf style format string. * @return success or false on a network failure. */ static int ssl_printf(SSL* ssl, const char* format, ...) ATTR_FORMAT(printf, 2, 3); /** printf style printing to the ssl connection */ static int ssl_printf(SSL* ssl, const char* format, ...) { va_list args; int ret; va_start(args, format); ret = ssl_print_vmsg(ssl, format, args); va_end(args); return ret; } /** read until \n */ static int ssl_read_line(SSL* ssl, char* buf, size_t max) { int r; size_t len = 0; while(len < max) { ERR_clear_error(); if((r=SSL_read(ssl, buf+len, 1)) <= 0) { if(SSL_get_error(ssl, r) == SSL_ERROR_ZERO_RETURN) { buf[len] = 0; return 1; } log_crypto_err("could not SSL_read"); return 0; } if(buf[len] == '\n') { /* return string without \n */ buf[len] = 0; return 1; } len++; } buf[max-1] = 0; log_err("control line too long (%d): %s", (int)max, buf); return 0; } /** skip whitespace, return new pointer into string */ static char* skipwhite(char* str) { /* EOS \0 is not a space */ while( isspace(*str) ) str++; return str; } /** send the OK to the control client */ static void send_ok(SSL* ssl) { (void)ssl_printf(ssl, "ok\n"); } /** do the stop command */ static void do_stop(SSL* ssl, struct daemon_remote* rc) { rc->worker->need_to_exit = 1; comm_base_exit(rc->worker->base); send_ok(ssl); } /** do the reload command */ static void do_reload(SSL* ssl, struct daemon_remote* rc) { rc->worker->need_to_exit = 0; comm_base_exit(rc->worker->base); send_ok(ssl); } /** do the verbosity command */ static void do_verbosity(SSL* ssl, char* str) { int val = atoi(str); if(val == 0 && strcmp(str, "0") != 0) { ssl_printf(ssl, "error in verbosity number syntax: %s\n", str); return; } verbosity = val; send_ok(ssl); } /** print stats from statinfo */ static int print_stats(SSL* ssl, char* nm, struct stats_info* s) { struct timeval avg; if(!ssl_printf(ssl, "%s.num.queries"SQ"%u\n", nm, (unsigned)s->svr.num_queries)) return 0; if(!ssl_printf(ssl, "%s.num.cachehits"SQ"%u\n", nm, (unsigned)(s->svr.num_queries - s->svr.num_queries_missed_cache))) return 0; if(!ssl_printf(ssl, "%s.num.cachemiss"SQ"%u\n", nm, (unsigned)s->svr.num_queries_missed_cache)) return 0; if(!ssl_printf(ssl, "%s.num.recursivereplies"SQ"%u\n", nm, (unsigned)s->mesh_replies_sent)) return 0; if(!ssl_printf(ssl, "%s.requestlist.avg"SQ"%g\n", nm, s->svr.num_queries_missed_cache? (double)s->svr.sum_query_list_size/ s->svr.num_queries_missed_cache : 0.0)) return 0; if(!ssl_printf(ssl, "%s.requestlist.max"SQ"%u\n", nm, (unsigned)s->svr.max_query_list_size)) return 0; if(!ssl_printf(ssl, "%s.requestlist.overwritten"SQ"%u\n", nm, (unsigned)s->mesh_jostled)) return 0; if(!ssl_printf(ssl, "%s.requestlist.exceeded"SQ"%u\n", nm, (unsigned)s->mesh_dropped)) return 0; if(!ssl_printf(ssl, "%s.requestlist.current.all"SQ"%u\n", nm, (unsigned)s->mesh_num_states)) return 0; if(!ssl_printf(ssl, "%s.requestlist.current.user"SQ"%u\n", nm, (unsigned)s->mesh_num_reply_states)) return 0; timeval_divide(&avg, &s->mesh_replies_sum_wait, s->mesh_replies_sent); if(!ssl_printf(ssl, "%s.recursion.time.avg"SQ"%d.%6.6d\n", nm, (int)avg.tv_sec, (int)avg.tv_usec)) return 0; if(!ssl_printf(ssl, "%s.recursion.time.median"SQ"%g\n", nm, s->mesh_time_median)) return 0; return 1; } /** print stats for one thread */ static int print_thread_stats(SSL* ssl, int i, struct stats_info* s) { char nm[16]; snprintf(nm, sizeof(nm), "thread%d", i); nm[sizeof(nm)-1]=0; return print_stats(ssl, nm, s); } /** print mem stats */ static int print_mem(SSL* ssl, struct worker* worker, struct daemon* daemon) { int m; size_t msg, rrset, val, iter; #ifdef HAVE_SBRK extern void* unbound_start_brk; void* cur = sbrk(0); if(!ssl_printf(ssl, "mem.total.sbrk"SQ"%u\n", (unsigned)(cur-unbound_start_brk))) return 0; #endif /* HAVE_SBRK */ msg = slabhash_get_mem(daemon->env->msg_cache); rrset = slabhash_get_mem(&daemon->env->rrset_cache->table); val=0; iter=0; m = modstack_find(&worker->env.mesh->mods, "validator"); if(m != -1) { fptr_ok(fptr_whitelist_mod_get_mem(worker->env.mesh-> mods.mod[m]->get_mem)); val = (*worker->env.mesh->mods.mod[m]->get_mem) (&worker->env, m); } m = modstack_find(&worker->env.mesh->mods, "iterator"); if(m != -1) { fptr_ok(fptr_whitelist_mod_get_mem(worker->env.mesh-> mods.mod[m]->get_mem)); iter = (*worker->env.mesh->mods.mod[m]->get_mem) (&worker->env, m); } if(!ssl_printf(ssl, "mem.cache.rrset"SQ"%u\n", (unsigned)rrset)) return 0; if(!ssl_printf(ssl, "mem.cache.message"SQ"%u\n", (unsigned)msg)) return 0; if(!ssl_printf(ssl, "mem.mod.iterator"SQ"%u\n", (unsigned)iter)) return 0; if(!ssl_printf(ssl, "mem.mod.validator"SQ"%u\n", (unsigned)val)) return 0; return 1; } /** print uptime stats */ static int print_uptime(SSL* ssl, struct worker* worker) { struct timeval now = *worker->env.now_tv; struct timeval up, dt; timeval_subtract(&up, &now, &worker->daemon->time_boot); timeval_subtract(&dt, &now, &worker->daemon->time_last_stat); worker->daemon->time_last_stat = now; if(!ssl_printf(ssl, "time.now"SQ"%d.%6.6d\n", (unsigned)now.tv_sec, (unsigned)now.tv_usec)) return 0; if(!ssl_printf(ssl, "time.up"SQ"%d.%6.6d\n", (unsigned)up.tv_sec, (unsigned)up.tv_usec)) return 0; if(!ssl_printf(ssl, "time.elapsed"SQ"%d.%6.6d\n", (unsigned)dt.tv_sec, (unsigned)dt.tv_usec)) return 0; return 1; } /** print extended stats */ static int print_ext(SSL* ssl, struct stats_info* s) { int i; char nm[16]; const ldns_rr_descriptor* desc; const ldns_lookup_table* lt; /* TYPE */ for(i=0; isvr.qtype[i] == 0) continue; desc = ldns_rr_descript((uint16_t)i); if(desc && desc->_name) { snprintf(nm, sizeof(nm), "%s", desc->_name); } else { snprintf(nm, sizeof(nm), "TYPE%d", i); } if(!ssl_printf(ssl, "num.query.type.%s"SQ"%u\n", nm, (unsigned)s->svr.qtype[i])) return 0; } if(!inhibit_zero || s->svr.qtype_big) { if(!ssl_printf(ssl, "num.query.type.other"SQ"%u\n", (unsigned)s->svr.qtype_big)) return 0; } /* CLASS */ for(i=0; isvr.qclass[i] == 0) continue; lt = ldns_lookup_by_id(ldns_rr_classes, i); if(lt && lt->name) { snprintf(nm, sizeof(nm), "%s", lt->name); } else { snprintf(nm, sizeof(nm), "CLASS%d", i); } if(!ssl_printf(ssl, "num.query.class.%s"SQ"%u\n", nm, (unsigned)s->svr.qclass[i])) return 0; } if(!inhibit_zero || s->svr.qclass_big) { if(!ssl_printf(ssl, "num.query.class.other"SQ"%u\n", (unsigned)s->svr.qclass_big)) return 0; } /* OPCODE */ for(i=0; isvr.qopcode[i] == 0) continue; lt = ldns_lookup_by_id(ldns_opcodes, i); if(lt && lt->name) { snprintf(nm, sizeof(nm), "%s", lt->name); } else { snprintf(nm, sizeof(nm), "OPCODE%d", i); } if(!ssl_printf(ssl, "num.query.opcode.%s"SQ"%u\n", nm, (unsigned)s->svr.qopcode[i])) return 0; } /* transport */ if(!ssl_printf(ssl, "num.query.tcp"SQ"%u\n", (unsigned)s->svr.qtcp)) return 0; /* flags */ if(!ssl_printf(ssl, "num.query.flags.QR"SQ"%u\n", (unsigned)s->svr.qbit_QR)) return 0; if(!ssl_printf(ssl, "num.query.flags.AA"SQ"%u\n", (unsigned)s->svr.qbit_AA)) return 0; if(!ssl_printf(ssl, "num.query.flags.TC"SQ"%u\n", (unsigned)s->svr.qbit_TC)) return 0; if(!ssl_printf(ssl, "num.query.flags.RD"SQ"%u\n", (unsigned)s->svr.qbit_RD)) return 0; if(!ssl_printf(ssl, "num.query.flags.RA"SQ"%u\n", (unsigned)s->svr.qbit_RA)) return 0; if(!ssl_printf(ssl, "num.query.flags.Z"SQ"%u\n", (unsigned)s->svr.qbit_Z)) return 0; if(!ssl_printf(ssl, "num.query.flags.AD"SQ"%u\n", (unsigned)s->svr.qbit_AD)) return 0; if(!ssl_printf(ssl, "num.query.flags.CD"SQ"%u\n", (unsigned)s->svr.qbit_CD)) return 0; if(!ssl_printf(ssl, "num.query.edns.present"SQ"%u\n", (unsigned)s->svr.qEDNS)) return 0; if(!ssl_printf(ssl, "num.query.edns.DO"SQ"%u\n", (unsigned)s->svr.qEDNS_DO)) return 0; /* RCODE */ for(i=0; isvr.ans_rcode[i] == 0) continue; lt = ldns_lookup_by_id(ldns_rcodes, i); if(lt && lt->name) { snprintf(nm, sizeof(nm), "%s", lt->name); } else { snprintf(nm, sizeof(nm), "RCODE%d", i); } if(!ssl_printf(ssl, "num.answer.rcode.%s"SQ"%u\n", nm, (unsigned)s->svr.ans_rcode[i])) return 0; } if(!inhibit_zero || s->svr.ans_rcode_nodata) { if(!ssl_printf(ssl, "num.answer.rcode.nodata"SQ"%u\n", (unsigned)s->svr.ans_rcode_nodata)) return 0; } /* validation */ if(!ssl_printf(ssl, "num.answer.secure"SQ"%u\n", (unsigned)s->svr.ans_secure)) return 0; if(!ssl_printf(ssl, "num.answer.bogus"SQ"%u\n", (unsigned)s->svr.ans_bogus)) return 0; if(!ssl_printf(ssl, "num.rrset.bogus"SQ"%u\n", (unsigned)s->svr.rrset_bogus)) return 0; /* threat detection */ if(!ssl_printf(ssl, "unwanted.queries"SQ"%u\n", (unsigned)s->svr.unwanted_queries)) return 0; if(!ssl_printf(ssl, "unwanted.replies"SQ"%u\n", (unsigned)s->svr.unwanted_replies)) return 0; return 1; } /** do the stats command */ static void do_stats(SSL* ssl, struct daemon_remote* rc) { struct daemon* daemon = rc->worker->daemon; struct stats_info total; struct stats_info s; int i; /* gather all thread statistics in one place */ for(i=0; inum; i++) { server_stats_obtain(rc->worker, daemon->workers[i], &s); if(!print_thread_stats(ssl, i, &s)) return; if(i == 0) total = s; else server_stats_add(&total, &s); } /* print the thread statistics */ total.mesh_time_median /= (double)daemon->num; if(!print_stats(ssl, "total", &total)) return; if(daemon->cfg->stat_extended) { if(!print_mem(ssl, rc->worker, daemon)) return; if(!print_uptime(ssl, rc->worker)) return; if(!print_ext(ssl, &total)) return; } } /** execute a remote control command */ static void execute_cmd(struct daemon_remote* rc, SSL* ssl, char* cmd) { char* p = skipwhite(cmd); /* compare command - check longer strings first in case of substrings*/ if(strncmp(p, "stop", 4) == 0) { do_stop(ssl, rc); } else if(strncmp(p, "reload", 6) == 0) { do_reload(ssl, rc); } else if(strncmp(p, "verbosity", 9) == 0) { do_verbosity(ssl, skipwhite(p+9)); } else if(strncmp(p, "stats", 5) == 0) { do_stats(ssl, rc); } else { (void)ssl_printf(ssl, "error unknown command '%s'\n", p); } } /** handle remote control request */ static void handle_req(struct daemon_remote* rc, struct rc_state* s, SSL* ssl) { int r; char magic[5]; char buf[1024]; fd_set_block(s->c->fd); /* try to read magic UBCT string */ ERR_clear_error(); if((r=SSL_read(ssl, magic, (int)sizeof(magic)-1)) <= 0) { if(SSL_get_error(ssl, r) == SSL_ERROR_ZERO_RETURN) return; log_crypto_err("could not SSL_read"); return; } magic[4] = 0; if( r != 4 || strcmp(magic, "UBCT") != 0) { verbose(VERB_QUERY, "control connection has bad magic string"); return; } /* read the command line */ if(!ssl_read_line(ssl, buf, sizeof(buf))) { return; } verbose(VERB_DETAIL, "control cmd: %s", buf); /* figure out what to do */ execute_cmd(rc, ssl, buf); } int remote_control_callback(struct comm_point* c, void* arg, int err, struct comm_reply* ATTR_UNUSED(rep)) { struct rc_state* s = (struct rc_state*)arg; struct daemon_remote* rc = s->rc; int r; if(err != NETEVENT_NOERROR) { if(err==NETEVENT_TIMEOUT) log_err("remote control timed out"); clean_point(rc, s); return 0; } /* (continue to) setup the SSL connection */ ERR_clear_error(); r = SSL_do_handshake(s->ssl); if(r != 1) { r = SSL_get_error(s->ssl, r); if(r == SSL_ERROR_WANT_READ) { if(s->shake_state == rc_hs_read) { /* try again later */ return 0; } s->shake_state = rc_hs_read; comm_point_listen_for_rw(c, 1, 0); return 0; } else if(r == SSL_ERROR_WANT_WRITE) { if(s->shake_state == rc_hs_write) { /* try again later */ return 0; } s->shake_state = rc_hs_write; comm_point_listen_for_rw(c, 0, 1); return 0; } else { log_crypto_err("remote control failed ssl"); clean_point(rc, s); return 0; } } s->shake_state = rc_none; /* once handshake has completed, check authentication */ if(SSL_get_verify_result(s->ssl) == X509_V_OK) { X509* x = SSL_get_peer_certificate(s->ssl); if(!x) { verbose(VERB_DETAIL, "remote control connection " "provided no client certificate"); clean_point(rc, s); return 0; } verbose(VERB_ALGO, "remote control connection authenticated"); X509_free(x); } else { verbose(VERB_DETAIL, "remote control connection failed to " "authenticate with client certificate"); clean_point(rc, s); return 0; } /* if OK start to actually handle the request */ handle_req(rc, s, s->ssl); verbose(VERB_ALGO, "remote control operation completed"); clean_point(rc, s); return 0; }