/* * util/data/msgreply.c - store message and reply data. * * Copyright (c) 2007, NLnet Labs. All rights reserved. * * This software is open source. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of the NLNET LABS nor the names of its contributors may * be used to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /** * \file * * This file contains a data structure to store a message and its reply. */ #include "config.h" #include "util/data/msgreply.h" #include "util/storage/lookup3.h" #include "util/log.h" #include "util/alloc.h" #include "util/netevent.h" #include "util/net_help.h" #include "util/data/dname.h" #include "util/region-allocator.h" #include "util/data/msgparse.h" /** return code that means the function ran out of memory. negative so it does * not conflict with DNS rcodes. */ #define RETVAL_OUTMEM -2 /** return code that means the data did not fit (completely) in the packet */ #define RETVAL_TRUNC -4 /** return code that means all is peachy keen. Equal to DNS rcode NOERROR */ #define RETVAL_OK 0 /** allocate qinfo, return 0 on error. */ static int parse_create_qinfo(ldns_buffer* pkt, struct msg_parse* msg, struct query_info* qinf) { if(msg->qname) { qinf->qname = (uint8_t*)malloc(msg->qname_len); if(!qinf->qname) return 0; dname_pkt_copy(pkt, qinf->qname, msg->qname); } else qinf->qname = 0; qinf->qnamesize = msg->qname_len; qinf->qtype = msg->qtype; qinf->qclass = msg->qclass; qinf->has_cd = 0; if(msg->flags & BIT_CD) qinf->has_cd = 1; return 1; } /** allocate replyinfo, return 0 on error. */ static int parse_create_repinfo(struct msg_parse* msg, struct reply_info** rep) { /* rrset_count-1 because the first ref is part of the struct. */ *rep = (struct reply_info*)malloc(sizeof(struct reply_info) + sizeof(struct rrset_ref) * (msg->rrset_count-1) + sizeof(struct ub_packed_rrset_key*) * msg->rrset_count); if(!*rep) return 0; (*rep)->flags = msg->flags; (*rep)->qdcount = msg->qdcount; (*rep)->ttl = 0; (*rep)->an_numrrsets = msg->an_rrsets; (*rep)->ns_numrrsets = msg->ns_rrsets; (*rep)->ar_numrrsets = msg->ar_rrsets; (*rep)->rrset_count = msg->rrset_count; /* array starts after the refs */ (*rep)->rrsets = (struct ub_packed_rrset_key**) &((*rep)->ref[msg->rrset_count]); /* zero the arrays to assist cleanup in case of malloc failure */ memset( (*rep)->rrsets, 0, sizeof(struct ub_packed_rrset_key*) * msg->rrset_count); memset( &(*rep)->ref[0], 0, sizeof(struct rrset_ref) * msg->rrset_count); return 1; } /** allocate (special) rrset keys, return 0 on error. */ static int parse_alloc_rrset_keys(struct msg_parse* msg, struct reply_info* rep, struct alloc_cache* alloc) { size_t i; for(i=0; irrset_count; i++) { rep->rrsets[i] = alloc_special_obtain(alloc); if(!rep->rrsets[i]) return 0; rep->rrsets[i]->entry.data = NULL; } return 1; } /** do the rdata copy */ static int rdata_copy(ldns_buffer* pkt, struct packed_rrset_data* data, uint8_t* to, struct rr_parse* rr, uint32_t* rr_ttl, uint16_t type) { uint16_t pkt_len; const ldns_rr_descriptor* desc; ldns_buffer_set_position(pkt, (size_t) (rr->ttl_data - ldns_buffer_begin(pkt))); log_assert(ldns_buffer_remaining(pkt) >= 6 /* ttl + rdatalen */); *rr_ttl = ldns_buffer_read_u32(pkt); /* RFC 2181 Section 8. if msb of ttl is set treat as if zero. */ if(*rr_ttl & 0x80000000U) *rr_ttl = 0; if(*rr_ttl < data->ttl) data->ttl = *rr_ttl; /* insert decompressed size into rdata len stored in memory */ /* -2 because rdatalen bytes are not included. */ pkt_len = htons(rr->size - 2); memmove(to, &pkt_len, sizeof(uint16_t)); to += 2; /* read packet rdata len */ pkt_len = ldns_buffer_read_u16(pkt); if(ldns_buffer_remaining(pkt) < pkt_len) return 0; log_assert((size_t)pkt_len+2 <= rr->size); desc = ldns_rr_descript(type); if(pkt_len > 0 && desc && desc->_dname_count > 0) { int count = (int)desc->_dname_count; int rdf = 0; size_t len; size_t oldpos; /* decompress dnames. */ while(pkt_len > 0 && count) { switch(desc->_wireformat[rdf]) { case LDNS_RDF_TYPE_DNAME: oldpos = ldns_buffer_position(pkt); dname_pkt_copy(pkt, to, ldns_buffer_current(pkt)); to += pkt_dname_len(pkt); pkt_len -= ldns_buffer_position(pkt)-oldpos; count--; len = 0; break; case LDNS_RDF_TYPE_STR: len = ldns_buffer_current(pkt)[0] + 1; break; default: len = get_rdf_size(desc->_wireformat[rdf]); break; } if(len) { memmove(to, ldns_buffer_current(pkt), len); to += len; ldns_buffer_skip(pkt, (ssize_t)len); log_assert(len <= pkt_len); pkt_len -= len; } rdf++; } } /* copy remaining rdata */ if(pkt_len > 0) memmove(to, ldns_buffer_current(pkt), pkt_len); return 1; } /** copy over the data into packed rrset */ static int parse_rr_copy(ldns_buffer* pkt, struct rrset_parse* pset, struct packed_rrset_data* data) { size_t i; struct rr_parse* rr = pset->rr_first; uint8_t* nextrdata; size_t total = pset->rr_count + pset->rrsig_count; data->ttl = MAX_TTL; data->count = pset->rr_count; data->rrsig_count = pset->rrsig_count; data->trust = rrset_trust_none; /* layout: struct - rr_len - rr_data - rdata - rrsig */ data->rr_len = (size_t*)((uint8_t*)data + sizeof(struct packed_rrset_data)); data->rr_ttl = (uint32_t*)&(data->rr_len[total]); data->rr_data = (uint8_t**)&(data->rr_ttl[total]); nextrdata = (uint8_t*)&(data->rr_data[total]); for(i=0; icount; i++) { data->rr_len[i] = rr->size; data->rr_data[i] = nextrdata; nextrdata += rr->size; if(!rdata_copy(pkt, data, data->rr_data[i], rr, &data->rr_ttl[i], pset->type)) return 0; rr = rr->next; } /* if rrsig, its rdata is at nextrdata */ rr = pset->rrsig_first; for(i=data->count; irr_len[i] = rr->size; data->rr_data[i] = nextrdata; nextrdata += rr->size; if(!rdata_copy(pkt, data, data->rr_data[i], rr, &data->rr_ttl[i], LDNS_RR_TYPE_RRSIG)) return 0; rr = rr->next; } return 1; } /** create rrset return 0 or rcode */ static int parse_create_rrset(ldns_buffer* pkt, struct rrset_parse* pset, struct packed_rrset_data** data) { /* allocate */ *data = malloc(sizeof(struct packed_rrset_data) + (pset->rr_count + pset->rrsig_count) * (sizeof(size_t)+sizeof(uint8_t*)+sizeof(uint32_t)) + pset->size); if(!*data) return LDNS_RCODE_SERVFAIL; /* copy & decompress */ if(!parse_rr_copy(pkt, pset, *data)) return LDNS_RCODE_SERVFAIL; return 0; } /** get trust value for rrset */ static enum rrset_trust get_rrset_trust(struct reply_info* rep, size_t i) { uint16_t AA = rep->flags & BIT_AA; /* TODO: need scrubber that knows what zone the server serves, so that * it can check if AA bit is warranted. * it can check if rrset_trust_nonauth_ans_AA should be used */ if(i < rep->an_numrrsets) { /* answer section */ if(AA) return rrset_trust_ans_AA; else return rrset_trust_ans_noAA; } else if(i < rep->an_numrrsets+rep->ns_numrrsets) { /* authority section */ if(AA) return rrset_trust_auth_AA; else return rrset_trust_auth_noAA; } else { /* addit section */ if(AA) return rrset_trust_add_AA; else return rrset_trust_add_noAA; } return rrset_trust_none; } /** * Copy and decompress rrs * @param pkt: the packet for compression pointer resolution. * @param msg: the parsed message * @param rep: reply info to put rrs into. * @return 0 or rcode. */ static int parse_copy_decompress(ldns_buffer* pkt, struct msg_parse* msg, struct reply_info* rep) { int ret; size_t i; uint16_t t; struct rrset_parse *pset = msg->rrset_first; struct packed_rrset_data* data; log_assert(rep); rep->ttl = MAX_TTL; if(rep->rrset_count == 0) rep->ttl = NORR_TTL; for(i=0; irrset_count; i++) { rep->rrsets[i]->rk.flags = pset->flags; rep->rrsets[i]->rk.dname_len = pset->dname_len; rep->rrsets[i]->rk.dname = (uint8_t*)malloc( pset->dname_len + 4 /* size of type and class */ ); if(!rep->rrsets[i]->rk.dname) return LDNS_RCODE_SERVFAIL; /** copy & decompress dname */ dname_pkt_copy(pkt, rep->rrsets[i]->rk.dname, pset->dname); /** copy over type and class */ t = htons(pset->type); memmove(&rep->rrsets[i]->rk.dname[pset->dname_len], &t, sizeof(uint16_t)); memmove(&rep->rrsets[i]->rk.dname[pset->dname_len+2], &pset->rrset_class, sizeof(uint16_t)); /** read data part. */ if((ret=parse_create_rrset(pkt, pset, &data)) != 0) return ret; rep->rrsets[i]->entry.data = (void*)data; rep->rrsets[i]->entry.key = (void*)rep->rrsets[i]; rep->rrsets[i]->entry.hash = pset->hash; data->trust = get_rrset_trust(rep, i); if(data->ttl < rep->ttl) rep->ttl = data->ttl; pset = pset->rrset_all_next; } return 0; } /** allocate and decompress message and rrsets, returns 0 or rcode. */ static int parse_create_msg(ldns_buffer* pkt, struct msg_parse* msg, struct alloc_cache* alloc, struct query_info* qinf, struct reply_info** rep) { int ret; log_assert(pkt && msg); if(!parse_create_qinfo(pkt, msg, qinf)) return LDNS_RCODE_SERVFAIL; if(!parse_create_repinfo(msg, rep)) return LDNS_RCODE_SERVFAIL; if(!parse_alloc_rrset_keys(msg, *rep, alloc)) return LDNS_RCODE_SERVFAIL; if((ret=parse_copy_decompress(pkt, msg, *rep)) != 0) return ret; return 0; } int reply_info_parse(ldns_buffer* pkt, struct alloc_cache* alloc, struct query_info* qinf, struct reply_info** rep, struct region* region, struct edns_data* edns) { /* use scratch pad region-allocator during parsing. */ struct msg_parse* msg; int ret; qinf->qname = NULL; *rep = NULL; if(!(msg = region_alloc(region, sizeof(*msg)))) { return LDNS_RCODE_SERVFAIL; } memset(msg, 0, sizeof(*msg)); log_assert(ldns_buffer_position(pkt) == 0); if((ret = parse_packet(pkt, msg, region)) != 0) { return ret; } if((ret = parse_extract_edns(msg, edns)) != 0) return ret; /* parse OK, allocate return structures */ /* this also performs dname decompression */ if((ret = parse_create_msg(pkt, msg, alloc, qinf, rep)) != 0) { query_info_clear(qinf); reply_info_parsedelete(*rep, alloc); *rep = NULL; return ret; } return 0; } /** helper compare function to sort in lock order */ static int reply_info_sortref_cmp(const void* a, const void* b) { if(a < b) return -1; if(a > b) return 1; return 0; } void reply_info_sortref(struct reply_info* rep) { qsort(&rep->ref[0], rep->rrset_count, sizeof(struct rrset_ref), reply_info_sortref_cmp); } void reply_info_set_ttls(struct reply_info* rep, uint32_t timenow) { size_t i, j; rep->ttl += timenow; for(i=0; irrset_count; i++) { struct packed_rrset_data* data = (struct packed_rrset_data*) rep->rrsets[i]->entry.data; data->ttl += timenow; for(j=0; jcount + data->rrsig_count; j++) data->rr_ttl[j] += timenow; } } void reply_info_parsedelete(struct reply_info* rep, struct alloc_cache* alloc) { size_t i; if(!rep) return; /* no need to lock, since not shared in hashtables. */ for(i=0; irrset_count; i++) { ub_packed_rrset_parsedelete(rep->rrsets[i], alloc); } free(rep); } int query_info_parse(struct query_info* m, ldns_buffer* query) { uint8_t* q = ldns_buffer_begin(query); /* minimum size: header + \0 + qtype + qclass */ if(ldns_buffer_limit(query) < LDNS_HEADER_SIZE + 5) return 0; log_assert(!LDNS_QR_WIRE(q)); log_assert(LDNS_OPCODE_WIRE(q) == LDNS_PACKET_QUERY); log_assert(LDNS_QDCOUNT(q) == 1); log_assert(ldns_buffer_position(query) == 0); m->has_cd = LDNS_CD_WIRE(q)?1:0; ldns_buffer_skip(query, LDNS_HEADER_SIZE); m->qname = ldns_buffer_current(query); if((m->qnamesize = query_dname_len(query)) == 0) return 0; /* parse error */ if(ldns_buffer_remaining(query) < 4) return 0; /* need qtype, qclass */ m->qtype = ldns_buffer_read_u16(query); m->qclass = ldns_buffer_read_u16(query); return 1; } int query_info_allocqname(struct query_info* m) { uint8_t* q = m->qname; if(!(m->qname = (uint8_t*)malloc(m->qnamesize))) { log_err("query_info_allocqname: out of memory"); return 0; /* out of memory */ } memcpy(m->qname, q, m->qnamesize); return 1; } /** tiny subroutine for msgreply_compare */ #define COMPARE_IT(x, y) \ if( (x) < (y) ) return -1; \ else if( (x) > (y) ) return +1; \ log_assert( (x) == (y) ); int query_info_compare(void* m1, void* m2) { struct query_info* msg1 = (struct query_info*)m1; struct query_info* msg2 = (struct query_info*)m2; int mc; /* from most different to least different for speed */ COMPARE_IT(msg1->qtype, msg2->qtype); if((mc = query_dname_compare(msg1->qname, msg2->qname)) != 0) return mc; log_assert(msg1->qnamesize == msg2->qnamesize); COMPARE_IT(msg1->has_cd, msg2->has_cd); COMPARE_IT(msg1->qclass, msg2->qclass); return 0; #undef COMPARE_IT } void query_info_clear(struct query_info* m) { free(m->qname); m->qname = NULL; } size_t msgreply_sizefunc(void* k, void* d) { struct query_info* q = (struct query_info*)k; struct reply_info* r = (struct reply_info*)d; size_t s = sizeof(struct msgreply_entry) + sizeof(struct reply_info) + q->qnamesize; s += (r->rrset_count-1) * sizeof(struct rrset_ref); s += r->rrset_count * sizeof(struct ub_packed_rrset_key*); return s; } void query_entry_delete(void *k, void* ATTR_UNUSED(arg)) { struct msgreply_entry* q = (struct msgreply_entry*)k; lock_rw_destroy(&q->entry.lock); query_info_clear(&q->key); free(q); } void reply_info_delete(void* d, void* ATTR_UNUSED(arg)) { struct reply_info* r = (struct reply_info*)d; free(r); } hashvalue_t query_info_hash(struct query_info *q) { hashvalue_t h = 0xab; h = hashlittle(&q->qtype, sizeof(q->qtype), h); h = hashlittle(&q->qclass, sizeof(q->qclass), h); h = hashlittle(&q->has_cd, sizeof(q->has_cd), h); h = dname_query_hash(q->qname, h); return h; } /** * Data structure to help domain name compression in outgoing messages. * A tree of dnames and their offsets in the packet is kept. * It is kept sorted, not canonical, but by label at least, so that after * a lookup of a name you know its closest match, and the parent from that * closest match. These are possible compression targets. * * It is a binary tree, not a rbtree or balanced tree, as the effort * of keeping it balanced probably outweighs usefulness (given typical * DNS packet size). */ struct compress_tree_node { /** left node in tree, all smaller to this */ struct compress_tree_node* left; /** right node in tree, all larger than this */ struct compress_tree_node* right; /** the parent node - not for tree, but zone parent. One less label */ struct compress_tree_node* parent; /** the domain name for this node. Pointer to uncompressed memory. */ uint8_t* dname; /** number of labels in domain name, kept to help compare func. */ int labs; /** offset in packet that points to this dname */ size_t offset; }; /** * Find domain name in tree, returns exact and closest match. * @param tree: root of tree. * @param dname: pointer to uncompressed dname. * @param labs: number of labels in domain name. * @param match: closest or exact match. * guaranteed to be smaller or equal to the sought dname. * can be null if the tree is empty. * @param matchlabels: number of labels that match with closest match. * can be zero is there is no match. * @return: 0 if no exact match. */ static int compress_tree_search(struct compress_tree_node* tree, uint8_t* dname, int labs, struct compress_tree_node** match, int* matchlabels) { int c, n, closen=0; struct compress_tree_node* p = tree; struct compress_tree_node* close = 0; while(p) { if((c = dname_lab_cmp(dname, labs, p->dname, p->labs, &n)) == 0) { *matchlabels = n; *match = p; return 1; } if(c<0) p = p->left; else { closen = n; close = p; /* p->dname is smaller than dname */ p = p->right; } } *matchlabels = closen; *match = close; return 0; } /** * Lookup a domain name in compression tree. * @param tree: root of tree (not the node with '.'). * @param dname: pointer to uncompressed dname. * @param labs: number of labels in domain name. * @return: 0 if not found or compress treenode with best compression. */ static struct compress_tree_node* compress_tree_lookup(struct compress_tree_node* tree, uint8_t* dname, int labs) { struct compress_tree_node* p; int m; if(labs <= 1) return 0; /* do not compress root node */ if(compress_tree_search(tree, dname, labs, &p, &m)) { /* exact match */ return p; } /* return some ancestor of p that compresses well. */ if(m>1) { /* www.example.com. (labs=4) matched foo.example.com.(labs=4) * then matchcount = 3. need to go up. */ while(p && p->labs > m) p = p->parent; return p; } return 0; } /** * Insert node into domain name compression tree. * @param tree: root of tree (may be modified) * @param dname: pointer to uncompressed dname (stored in tree). * @param labs: number of labels in dname. * @param offset: offset into packet for dname. * @param region: how to allocate memory for new node. * @return new node or 0 on malloc failure. */ static struct compress_tree_node* compress_tree_insert(struct compress_tree_node** tree, uint8_t* dname, int labs, size_t offset, region_type* region) { int c, m; struct compress_tree_node* p, **prev; struct compress_tree_node* n = (struct compress_tree_node*) region_alloc(region, sizeof(struct compress_tree_node)); if(!n) return 0; n->left = 0; n->right = 0; n->parent = 0; n->dname = dname; n->labs = labs; n->offset = offset; /* find spot to insert it into */ prev = tree; p = *tree; while(p) { c = dname_lab_cmp(dname, labs, p->dname, p->labs, &m); log_assert(c != 0); /* may not already be in tree */ if(c==0) return p; /* insert only once */ if(c<0) { prev = &p->left; p = p->left; } else { prev = &p->right; p = p->right; } } *prev = n; return n; } /** * Store domain name and ancestors into compression tree. * @param tree: root of tree (may be modified) * @param dname: pointer to uncompressed dname (stored in tree). * @param labs: number of labels in dname. * @param offset: offset into packet for dname. * @param region: how to allocate memory for new node. * @param closest: match from previous lookup, used to compress dname. * may be NULL if no previous match. * if the tree has an ancestor of dname already, this must be it. * @return: 0 on memory error. */ static int compress_tree_store(struct compress_tree_node** tree, uint8_t* dname, int labs, size_t offset, region_type* region, struct compress_tree_node* closest) { uint8_t lablen; struct compress_tree_node** lastparentptr = 0; struct compress_tree_node* newnode; int uplabs = labs-1; /* does not store root in tree */ if(closest) uplabs = labs - closest->labs; log_assert(uplabs >= 0); while(uplabs--) { if(offset > PTR_MAX_OFFSET) { if(lastparentptr) *lastparentptr = closest; return 1; /* compression pointer no longer useful */ } /* store dname, labs, offset */ if(!(newnode = compress_tree_insert(tree, dname, labs, offset, region))) { if(lastparentptr) *lastparentptr = closest; return 0; } if(lastparentptr) *lastparentptr = newnode; lastparentptr = &newnode->parent; /* next label */ lablen = *dname++; dname += lablen; offset += lablen+1; labs--; } if(lastparentptr) *lastparentptr = closest; return 1; } /** compress a domain name */ static int write_compressed_dname(ldns_buffer* pkt, uint8_t* dname, int labs, struct compress_tree_node* p) { /* compress it */ int labcopy = labs - p->labs; uint8_t lablen; uint16_t ptr; /* copy the first couple of labels */ while(labcopy--) { lablen = *dname++; if(ldns_buffer_remaining(pkt) < (size_t)lablen+1) return 0; ldns_buffer_write_u8(pkt, lablen); ldns_buffer_write(pkt, dname, lablen); dname += lablen; } /* insert compression ptr */ if(ldns_buffer_remaining(pkt) < 2) return 0; ptr = PTR_CREATE(p->offset); ldns_buffer_write_u16(pkt, ptr); return 1; } /** compress owner name of RR, return RETVAL_OUTMEM RETVAL_TRUNC */ static int compress_owner(struct ub_packed_rrset_key* key, ldns_buffer* pkt, region_type* region, struct compress_tree_node** tree, size_t owner_pos, uint16_t* owner_ptr, int owner_labs) { struct compress_tree_node* p; if(!*owner_ptr) { /* compress first time dname */ if((p = compress_tree_lookup(*tree, key->rk.dname, owner_labs))) { if(p->labs == owner_labs) /* avoid ptr chains, since some software is * not capable of decoding ptr after a ptr. */ *owner_ptr = htons(PTR_CREATE(p->offset)); if(!write_compressed_dname(pkt, key->rk.dname, owner_labs, p)) return RETVAL_TRUNC; /* check if typeclass+4 ttl + rdatalen is available */ if(ldns_buffer_remaining(pkt) < 4+4+2) return RETVAL_TRUNC; ldns_buffer_write(pkt, &key->rk.dname[ key->rk.dname_len], 4); } else { /* no compress */ if(ldns_buffer_remaining(pkt) < key->rk.dname_len+4+4+2) return RETVAL_TRUNC; ldns_buffer_write(pkt, key->rk.dname, key->rk.dname_len+4); if(owner_pos <= PTR_MAX_OFFSET) *owner_ptr = htons(PTR_CREATE(owner_pos)); } if(!compress_tree_store(tree, key->rk.dname, owner_labs, owner_pos, region, p)) return RETVAL_OUTMEM; } else { /* always compress 2nd-further RRs in RRset */ if(ldns_buffer_remaining(pkt) < 2+4+4+2) return RETVAL_TRUNC; ldns_buffer_write(pkt, owner_ptr, 2); ldns_buffer_write(pkt, &key->rk.dname[key->rk.dname_len], 4); } return RETVAL_OK; } /** compress any domain name to the packet, return RETVAL_* */ static int compress_any_dname(uint8_t* dname, ldns_buffer* pkt, int labs, region_type* region, struct compress_tree_node** tree) { struct compress_tree_node* p; size_t pos = ldns_buffer_position(pkt); if((p = compress_tree_lookup(*tree, dname, labs))) { if(!write_compressed_dname(pkt, dname, labs, p)) return RETVAL_TRUNC; } else { if(!dname_buffer_write(pkt, dname)) return RETVAL_TRUNC; } if(!compress_tree_store(tree, dname, labs, pos, region, p)) return RETVAL_OUTMEM; return RETVAL_OK; } /** return true if type needs domain name compression in rdata */ static const ldns_rr_descriptor* type_rdata_compressable(struct ub_packed_rrset_key* key) { uint16_t t; memmove(&t, &key->rk.dname[key->rk.dname_len], sizeof(t)); t = ntohs(t); if(ldns_rr_descript(t) && ldns_rr_descript(t)->_compress == LDNS_RR_COMPRESS) return ldns_rr_descript(t); return 0; } /** compress domain names in rdata, return RETVAL_* */ static int compress_rdata(ldns_buffer* pkt, uint8_t* rdata, size_t todolen, region_type* region, struct compress_tree_node** tree, const ldns_rr_descriptor* desc) { int labs, r, rdf = 0; size_t dname_len, len, pos = ldns_buffer_position(pkt); uint8_t count = desc->_dname_count; ldns_buffer_skip(pkt, 2); /* rdata len fill in later */ /* space for rdatalen checked for already */ rdata += 2; todolen -= 2; while(todolen > 0 && count) { switch(desc->_wireformat[rdf]) { case LDNS_RDF_TYPE_DNAME: labs = dname_count_size_labels(rdata, &dname_len); if((r=compress_any_dname(rdata, pkt, labs, region, tree)) != RETVAL_OK) return r; rdata += dname_len; todolen -= dname_len; count--; len = 0; break; case LDNS_RDF_TYPE_STR: len = *rdata + 1; break; default: len = get_rdf_size(desc->_wireformat[rdf]); } if(len) { /* copy over */ if(ldns_buffer_remaining(pkt) < len) return RETVAL_TRUNC; ldns_buffer_write(pkt, rdata, len); todolen -= len; rdata += len; } rdf++; } /* copy remainder */ if(todolen > 0) { if(ldns_buffer_remaining(pkt) < todolen) return RETVAL_TRUNC; ldns_buffer_write(pkt, rdata, todolen); } /* set rdata len */ ldns_buffer_write_u16_at(pkt, pos, ldns_buffer_position(pkt)-pos-2); return RETVAL_OK; } /** store rrset in buffer in wireformat, return RETVAL_* */ static int packed_rrset_encode(struct ub_packed_rrset_key* key, ldns_buffer* pkt, uint16_t* num_rrs, uint32_t timenow, region_type* region, int do_data, int do_sig, struct compress_tree_node** tree) { size_t i, owner_pos; int r, owner_labs; uint16_t owner_ptr = 0; struct packed_rrset_data* data = (struct packed_rrset_data*) key->entry.data; owner_labs = dname_count_labels(key->rk.dname); owner_pos = ldns_buffer_position(pkt); if(do_data) { const ldns_rr_descriptor* c = type_rdata_compressable(key); for(i=0; icount; i++) { if((r=compress_owner(key, pkt, region, tree, owner_pos, &owner_ptr, owner_labs)) != RETVAL_OK) return r; ldns_buffer_write_u32(pkt, data->rr_ttl[i]-timenow); if(c) { if((r=compress_rdata(pkt, data->rr_data[i], data->rr_len[i], region, tree, c)) != RETVAL_OK) return r; } else { if(ldns_buffer_remaining(pkt) < data->rr_len[i]) return RETVAL_TRUNC; ldns_buffer_write(pkt, data->rr_data[i], data->rr_len[i]); } } } /* insert rrsigs */ if(do_sig) { size_t total = data->count+data->rrsig_count; for(i=data->count; irr_len[i]) return RETVAL_TRUNC; ldns_buffer_write(pkt, &owner_ptr, 2); } else { if((r=compress_any_dname(key->rk.dname, pkt, owner_labs, region, tree)) != RETVAL_OK) return r; if(ldns_buffer_remaining(pkt) < 4+4+data->rr_len[i]) return RETVAL_TRUNC; } ldns_buffer_write_u16(pkt, LDNS_RR_TYPE_RRSIG); ldns_buffer_write(pkt, &(key->rk.dname[ key->rk.dname_len+2]), sizeof(uint16_t)); ldns_buffer_write_u32(pkt, data->rr_ttl[i]-timenow); /* rrsig rdata cannot be compressed, perform 100+ byte * memcopy. */ ldns_buffer_write(pkt, data->rr_data[i], data->rr_len[i]); } } /* change rrnum only after we are sure it fits */ if(do_data) *num_rrs += data->count; if(do_sig) *num_rrs += data->rrsig_count; return RETVAL_OK; } /** store msg section in wireformat buffer, return RETVAL_* */ static int insert_section(struct reply_info* rep, size_t num_rrsets, uint16_t* num_rrs, ldns_buffer* pkt, size_t rrsets_before, uint32_t timenow, region_type* region, int addit, struct compress_tree_node** tree) { int r; size_t i, setstart; *num_rrs = 0; if(!addit) { for(i=0; irrsets[rrsets_before+i], pkt, num_rrs, timenow, region, 1, 1, tree)) != RETVAL_OK) { /* Bad, but if due to size must set TC bit */ /* trim off the rrset neatly. */ ldns_buffer_set_position(pkt, setstart); return r; } } } else { for(i=0; irrsets[rrsets_before+i], pkt, num_rrs, timenow, region, 1, 0, tree)) != RETVAL_OK) { ldns_buffer_set_position(pkt, setstart); return r; } } for(i=0; irrsets[rrsets_before+i], pkt, num_rrs, timenow, region, 0, 1, tree)) != RETVAL_OK) { ldns_buffer_set_position(pkt, setstart); return r; } } } return RETVAL_OK; } int reply_info_encode(struct query_info* qinfo, struct reply_info* rep, uint16_t id, uint16_t flags, ldns_buffer* buffer, uint32_t timenow, region_type* region, uint16_t udpsize) { uint16_t ancount=0, nscount=0, arcount=0; struct compress_tree_node* tree = 0; int r; ldns_buffer_clear(buffer); if(udpsize < ldns_buffer_limit(buffer)) ldns_buffer_set_limit(buffer, udpsize); if(ldns_buffer_remaining(buffer) < LDNS_HEADER_SIZE) return 0; ldns_buffer_write(buffer, &id, sizeof(uint16_t)); ldns_buffer_write_u16(buffer, flags); ldns_buffer_write_u16(buffer, rep->qdcount); /* set an, ns, ar counts to zero in case of small packets */ ldns_buffer_write(buffer, "\000\000\000\000\000\000", 6); /* insert query section */ if(rep->qdcount) { if(ldns_buffer_remaining(buffer) < qinfo->qnamesize+sizeof(uint16_t)*2) return 0; /* buffer too small */ if(!compress_tree_store(&tree, qinfo->qname, dname_count_labels(qinfo->qname), ldns_buffer_position(buffer), region, NULL)) return 0; ldns_buffer_write(buffer, qinfo->qname, qinfo->qnamesize); ldns_buffer_write_u16(buffer, qinfo->qtype); ldns_buffer_write_u16(buffer, qinfo->qclass); } /* insert answer section */ if((r=insert_section(rep, rep->an_numrrsets, &ancount, buffer, 0, timenow, region, 0, &tree)) != RETVAL_OK) { if(r == RETVAL_TRUNC) { /* create truncated message */ ldns_buffer_write_u16_at(buffer, 6, ancount); LDNS_TC_SET(ldns_buffer_begin(buffer)); ldns_buffer_flip(buffer); return 1; } return 0; } ldns_buffer_write_u16_at(buffer, 6, ancount); /* insert auth section */ if((r=insert_section(rep, rep->ns_numrrsets, &nscount, buffer, rep->an_numrrsets, timenow, region, 0, &tree)) != RETVAL_OK) { if(r == RETVAL_TRUNC) { /* create truncated message */ ldns_buffer_write_u16_at(buffer, 8, nscount); LDNS_TC_SET(ldns_buffer_begin(buffer)); ldns_buffer_flip(buffer); return 1; } return 0; } ldns_buffer_write_u16_at(buffer, 8, nscount); /* insert add section */ if((r=insert_section(rep, rep->ar_numrrsets, &arcount, buffer, rep->an_numrrsets + rep->ns_numrrsets, timenow, region, 1, &tree)) != RETVAL_OK) { if(r == RETVAL_TRUNC) { /* no need to set TC bit, this is the additional */ ldns_buffer_write_u16_at(buffer, 10, arcount); ldns_buffer_flip(buffer); return 1; } return 0; } ldns_buffer_write_u16_at(buffer, 10, arcount); ldns_buffer_flip(buffer); return 1; } uint16_t calc_edns_field_size(struct edns_data* edns) { if(!edns || !edns->edns_present) return 0; /* domain root '.' + type + class + ttl + rdatalen(=0) */ return 1 + 2 + 2 + 4 + 2; } void attach_edns_record(ldns_buffer* pkt, struct edns_data* edns) { size_t len; if(!edns || !edns->edns_present) return; /* inc additional count */ ldns_buffer_write_u16_at(pkt, 10, ldns_buffer_read_u16_at(pkt, 10) + 1); len = ldns_buffer_limit(pkt); ldns_buffer_clear(pkt); ldns_buffer_set_position(pkt, len); /* write EDNS record */ ldns_buffer_write_u8(pkt, 0); /* '.' label */ ldns_buffer_write_u16(pkt, LDNS_RR_TYPE_OPT); /* type */ ldns_buffer_write_u16(pkt, edns->udp_size); /* class */ ldns_buffer_write_u8(pkt, edns->ext_rcode); /* ttl */ ldns_buffer_write_u8(pkt, edns->edns_version); ldns_buffer_write_u16(pkt, edns->bits); ldns_buffer_write_u16(pkt, 0); /* rdatalen */ ldns_buffer_flip(pkt); } int reply_info_answer_encode(struct query_info* qinf, struct reply_info* rep, uint16_t id, uint16_t qflags, ldns_buffer* pkt, uint32_t timenow, int cached, struct region* region, uint16_t udpsize, struct edns_data* edns) { uint16_t flags; if(!cached) { /* original flags, copy RD bit from query. */ flags = rep->flags | (qflags & BIT_RD); } else { /* remove AA bit, copy RD and CD bits from query. */ flags = (rep->flags & ~BIT_AA) | (qflags & (BIT_RD|BIT_CD)); } log_assert(flags & BIT_QR); /* QR bit must be on in our replies */ if(udpsize < LDNS_HEADER_SIZE + calc_edns_field_size(edns)) return 0; /* packet too small to contain edns... */ udpsize -= calc_edns_field_size(edns); if(!reply_info_encode(qinf, rep, id, flags, pkt, timenow, region, udpsize)) { log_err("reply encode: out of memory"); return 0; } attach_edns_record(pkt, edns); return 1; } struct msgreply_entry* query_info_entrysetup(struct query_info* q, struct reply_info* r, hashvalue_t h) { struct msgreply_entry* e = (struct msgreply_entry*)malloc( sizeof(struct msgreply_entry)); if(!e) return NULL; memcpy(&e->key, q, sizeof(*q)); e->entry.hash = h; e->entry.key = e; e->entry.data = r; lock_rw_init(&e->entry.lock); lock_protect(&e->entry.lock, &e->key, sizeof(e->key)); lock_protect(&e->entry.lock, &e->entry.hash, sizeof(e->entry.hash) + sizeof(e->entry.key) + sizeof(e->entry.data)); lock_protect(&e->entry.lock, e->key.qname, e->key.qnamesize); q->qname = NULL; return e; } void qinfo_query_encode(ldns_buffer* pkt, struct query_info* qinfo) { uint16_t flags = 0; /* QUERY, NOERROR */ if(qinfo->has_cd) flags |= BIT_CD; ldns_buffer_clear(pkt); log_assert(ldns_buffer_remaining(pkt) >= 12+255+4/*max query*/); ldns_buffer_skip(pkt, 2); /* id done later */ ldns_buffer_write_u16(pkt, flags); ldns_buffer_write_u16(pkt, 1); /* query count */ ldns_buffer_write(pkt, "\000\000\000\000\000\000", 6); /* counts */ ldns_buffer_write(pkt, qinfo->qname, qinfo->qnamesize); ldns_buffer_write_u16(pkt, qinfo->qtype); ldns_buffer_write_u16(pkt, qinfo->qclass); ldns_buffer_flip(pkt); }