/* * iterator/iter_utils.c - iterative resolver module utility functions. * * Copyright (c) 2007, NLnet Labs. All rights reserved. * * This software is open source. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of the NLNET LABS nor the names of its contributors may * be used to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /** * \file * * This file contains functions to assist the iterator module. * Configuration options. Forward zones. */ #include "config.h" #include "iterator/iter_utils.h" #include "iterator/iterator.h" #include "iterator/iter_hints.h" #include "iterator/iter_fwd.h" #include "iterator/iter_donotq.h" #include "iterator/iter_delegpt.h" #include "iterator/iter_priv.h" #include "services/cache/infra.h" #include "services/cache/dns.h" #include "services/cache/rrset.h" #include "util/net_help.h" #include "util/module.h" #include "util/log.h" #include "util/config_file.h" #include "util/regional.h" #include "util/data/msgparse.h" #include "util/data/dname.h" #include "util/random.h" #include "util/fptr_wlist.h" #include "validator/val_anchor.h" /** time when nameserver glue is said to be 'recent' */ #define SUSPICION_RECENT_EXPIRY 86400 /** penalty to validation failed blacklisted IPs */ #define BLACKLIST_PENALTY (USEFUL_SERVER_TOP_TIMEOUT*3) /** fillup fetch policy array */ static void fetch_fill(struct iter_env* ie, const char* str) { char* s = (char*)str, *e; int i; for(i=0; imax_dependency_depth+1; i++) { ie->target_fetch_policy[i] = strtol(s, &e, 10); if(s == e) fatal_exit("cannot parse fetch policy number %s", s); s = e; } } /** Read config string that represents the target fetch policy */ static int read_fetch_policy(struct iter_env* ie, const char* str) { int count = cfg_count_numbers(str); if(count < 1) { log_err("Cannot parse target fetch policy: \"%s\"", str); return 0; } ie->max_dependency_depth = count - 1; ie->target_fetch_policy = (int*)calloc( (size_t)ie->max_dependency_depth+1, sizeof(int)); if(!ie->target_fetch_policy) { log_err("alloc fetch policy: out of memory"); return 0; } fetch_fill(ie, str); return 1; } int iter_apply_cfg(struct iter_env* iter_env, struct config_file* cfg) { int i; /* target fetch policy */ if(!read_fetch_policy(iter_env, cfg->target_fetch_policy)) return 0; for(i=0; imax_dependency_depth+1; i++) verbose(VERB_QUERY, "target fetch policy for level %d is %d", i, iter_env->target_fetch_policy[i]); if(!iter_env->hints) iter_env->hints = hints_create(); if(!iter_env->hints || !hints_apply_cfg(iter_env->hints, cfg)) { log_err("Could not set root or stub hints"); return 0; } if(!iter_env->donotq) iter_env->donotq = donotq_create(); if(!iter_env->donotq || !donotq_apply_cfg(iter_env->donotq, cfg)) { log_err("Could not set donotqueryaddresses"); return 0; } if(!iter_env->priv) iter_env->priv = priv_create(); if(!iter_env->priv || !priv_apply_cfg(iter_env->priv, cfg)) { log_err("Could not set private addresses"); return 0; } iter_env->supports_ipv6 = cfg->do_ip6; return 1; } /** filter out unsuitable targets * @param iter_env: iterator environment with ipv6-support flag. * @param env: module environment with infra cache. * @param name: zone name * @param namelen: length of name * @param qtype: query type (host order). * @param now: current time * @param a: address in delegation point we are examining. * @return an integer that signals the target suitability. * as follows: * -1: The address should be omitted from the list. * Because: * o The address is bogus (DNSSEC validation failure). * o Listed as donotquery * o is ipv6 but no ipv6 support (in operating system). * o is lame * Otherwise, an rtt in milliseconds. * 0 .. USEFUL_SERVER_TOP_TIMEOUT-1 * The roundtrip time timeout estimate. less than 2 minutes. * Note that util/rtt.c has a MIN_TIMEOUT of 50 msec, thus * values 0 .. 49 are not used, unless that is changed. * USEFUL_SERVER_TOP_TIMEOUT * This value exactly is given for unresponsive blacklisted. * USEFUL_SERVER_TOP_TIMEOUT+1 * For non-blacklisted servers: huge timeout, but has traffic. * USEFUL_SERVER_TOP_TIMEOUT .. * dnsseclame servers get penalty * also for parent-side lame servers (lame in delegpt). * USEFUL_SERVER_TOP_TIMEOUT*2 .. * recursion lame servers get penalty * UNKNOWN_SERVER_NICENESS * If no information is known about the server, this is * returned. 376 msec or so. * +BLACKLIST_PENALTY (of USEFUL_TOP_TIMEOUT*3) for dnssec failed IPs. * * When a final value is chosen that is dnsseclame ; dnsseclameness checking * is turned off (so we do not discard the reply). * When a final value is chosen that is recursionlame; RD bit is set on query. * Because of the numbers this means recursionlame also have dnssec lameness * checking turned off. */ static int iter_filter_unsuitable(struct iter_env* iter_env, struct module_env* env, uint8_t* name, size_t namelen, uint16_t qtype, uint32_t now, struct delegpt_addr* a) { int rtt, lame, reclame, dnsseclame, lost; if(a->bogus) return -1; /* address of server is bogus */ if(donotq_lookup(iter_env->donotq, &a->addr, a->addrlen)) { return -1; /* server is on the donotquery list */ } if(!iter_env->supports_ipv6 && addr_is_ip6(&a->addr, a->addrlen)) { return -1; /* there is no ip6 available */ } /* check lameness - need zone , class info */ if(infra_get_lame_rtt(env->infra_cache, &a->addr, a->addrlen, name, namelen, qtype, &lame, &dnsseclame, &reclame, &rtt, &lost, now)) { log_addr(VERB_ALGO, "servselect", &a->addr, a->addrlen); verbose(VERB_ALGO, " rtt=%d%s%s%s", rtt, lame?" LAME":"", dnsseclame?" DNSSEC_LAME":"", reclame?" REC_LAME":""); if(lame) return -1; /* server is lame */ else if(rtt >= USEFUL_SERVER_TOP_TIMEOUT && lost >= USEFUL_SERVER_MAX_LOST) /* server is unresponsive */ return USEFUL_SERVER_TOP_TIMEOUT; else if(a->lame) return rtt+USEFUL_SERVER_TOP_TIMEOUT+1; /* nonpref */ else if(rtt >= USEFUL_SERVER_TOP_TIMEOUT) /* not blacklisted*/ return USEFUL_SERVER_TOP_TIMEOUT+1; else if(reclame) return rtt+USEFUL_SERVER_TOP_TIMEOUT*2; /* nonpref */ else if(dnsseclame ) return rtt+USEFUL_SERVER_TOP_TIMEOUT; /* nonpref */ else return rtt; } /* no server information present */ if(a->lame) return USEFUL_SERVER_TOP_TIMEOUT+1; /* nonpref */ return UNKNOWN_SERVER_NICENESS; } /** lookup RTT information, and also store fastest rtt (if any) */ static int iter_fill_rtt(struct iter_env* iter_env, struct module_env* env, uint8_t* name, size_t namelen, uint16_t qtype, uint32_t now, struct delegpt* dp, int* best_rtt, struct sock_list* blacklist) { int got_it = 0; struct delegpt_addr* a; if(dp->bogus) return 0; /* NS bogus, all bogus, nothing found */ for(a=dp->result_list; a; a = a->next_result) { a->sel_rtt = iter_filter_unsuitable(iter_env, env, name, namelen, qtype, now, a); if(a->sel_rtt != -1) { if(sock_list_find(blacklist, &a->addr, a->addrlen)) a->sel_rtt += BLACKLIST_PENALTY; if(!got_it) { *best_rtt = a->sel_rtt; got_it = 1; } else if(a->sel_rtt < *best_rtt) { *best_rtt = a->sel_rtt; } } } return got_it; } /** filter the addres list, putting best targets at front, * returns number of best targets (or 0, no suitable targets) */ static int iter_filter_order(struct iter_env* iter_env, struct module_env* env, uint8_t* name, size_t namelen, uint16_t qtype, uint32_t now, struct delegpt* dp, int* selected_rtt, int open_target, struct sock_list* blacklist) { int got_num = 0, low_rtt = 0, swap_to_front; struct delegpt_addr* a, *n, *prev=NULL; /* fillup sel_rtt and find best rtt in the bunch */ got_num = iter_fill_rtt(iter_env, env, name, namelen, qtype, now, dp, &low_rtt, blacklist); if(got_num == 0) return 0; if(low_rtt >= USEFUL_SERVER_TOP_TIMEOUT && (delegpt_count_missing_targets(dp) > 0 || open_target > 0)) { verbose(VERB_ALGO, "Bad choices, trying to get more choice"); return 0; /* we want more choice. The best choice is a bad one. return 0 to force the caller to fetch more */ } got_num = 0; a = dp->result_list; while(a) { /* skip unsuitable targets */ if(a->sel_rtt == -1) { prev = a; a = a->next_result; continue; } /* classify the server address and determine what to do */ swap_to_front = 0; if(a->sel_rtt >= low_rtt && a->sel_rtt - low_rtt <= RTT_BAND) { got_num++; swap_to_front = 1; } else if(a->sel_rttsel_rtt<=RTT_BAND) { got_num++; swap_to_front = 1; } /* swap to front if necessary, or move to next result */ if(swap_to_front && prev) { n = a->next_result; prev->next_result = n; a->next_result = dp->result_list; dp->result_list = a; a = n; } else { prev = a; a = a->next_result; } } *selected_rtt = low_rtt; return got_num; } struct delegpt_addr* iter_server_selection(struct iter_env* iter_env, struct module_env* env, struct delegpt* dp, uint8_t* name, size_t namelen, uint16_t qtype, int* dnssec_expected, int* chase_to_rd, int open_target, struct sock_list* blacklist) { int sel; int selrtt; struct delegpt_addr* a, *prev; int num = iter_filter_order(iter_env, env, name, namelen, qtype, *env->now, dp, &selrtt, open_target, blacklist); if(num == 0) return NULL; verbose(VERB_ALGO, "selrtt %d", selrtt); if(selrtt > USEFUL_SERVER_TOP_TIMEOUT*2) { verbose(VERB_ALGO, "chase to recursion lame server"); *chase_to_rd = 1; } if(selrtt > USEFUL_SERVER_TOP_TIMEOUT) { verbose(VERB_ALGO, "chase to dnssec lame server"); *dnssec_expected = 0; } if(selrtt == USEFUL_SERVER_TOP_TIMEOUT) { verbose(VERB_ALGO, "chase to blacklisted lame server"); /* the best choice is a blacklisted, unresponsive server, * we need to throttle down our traffic towards it */ if(ub_random(env->rnd) % 100 != 1) { /* 99% of the time, drop query */ return NULL; } } if(num == 1) { a = dp->result_list; if(++a->attempts < OUTBOUND_MSG_RETRY) return a; dp->result_list = a->next_result; return a; } /* randomly select a target from the list */ log_assert(num > 1); /* we do not need secure random numbers here, but * we do need it to be threadsafe, so we use this */ sel = ub_random(env->rnd) % num; a = dp->result_list; prev = NULL; while(sel > 0 && a) { prev = a; a = a->next_result; sel--; } if(!a) /* robustness */ return NULL; if(++a->attempts < OUTBOUND_MSG_RETRY) return a; /* remove it from the delegation point result list */ if(prev) prev->next_result = a->next_result; else dp->result_list = a->next_result; return a; } struct dns_msg* dns_alloc_msg(ldns_buffer* pkt, struct msg_parse* msg, struct regional* region) { struct dns_msg* m = (struct dns_msg*)regional_alloc(region, sizeof(struct dns_msg)); if(!m) return NULL; memset(m, 0, sizeof(*m)); if(!parse_create_msg(pkt, msg, NULL, &m->qinfo, &m->rep, region)) { log_err("malloc failure: allocating incoming dns_msg"); return NULL; } return m; } struct dns_msg* dns_copy_msg(struct dns_msg* from, struct regional* region) { struct dns_msg* m = (struct dns_msg*)regional_alloc(region, sizeof(struct dns_msg)); if(!m) return NULL; m->qinfo = from->qinfo; if(!(m->qinfo.qname = regional_alloc_init(region, from->qinfo.qname, from->qinfo.qname_len))) return NULL; if(!(m->rep = reply_info_copy(from->rep, NULL, region))) return NULL; return m; } int iter_dns_store(struct module_env* env, struct query_info* msgqinf, struct reply_info* msgrep, int is_referral) { return dns_cache_store(env, msgqinf, msgrep, is_referral); } int iter_ns_probability(struct ub_randstate* rnd, int n, int m) { int sel; if(n == m) /* 100% chance */ return 1; /* we do not need secure random numbers here, but * we do need it to be threadsafe, so we use this */ sel = ub_random(rnd) % m; return (sel < n); } int iter_suspect_exists(struct query_info* qinfo, struct delegpt* dp, struct module_env* env) { struct ub_packed_rrset_key* r; if(qinfo->qtype != LDNS_RR_TYPE_A && qinfo->qtype != LDNS_RR_TYPE_AAAA) return 0; /* not glue type */ if(!dname_subdomain_c(qinfo->qname, dp->name)) return 0; /* not in-zone */ if(!delegpt_find_ns(dp, qinfo->qname, qinfo->qname_len)) return 0; /* not glue */ /* do we suspect that it exists? lookup with time=0 */ r = rrset_cache_lookup(env->rrset_cache, qinfo->qname, qinfo->qname_len, qinfo->qtype, qinfo->qclass, 0, 0, 0); if(r) { struct packed_rrset_data* d = (struct packed_rrset_data*) r->entry.data; /* if it is valid, no need for queries to parent zone */ if(*env->now <= d->ttl) { lock_rw_unlock(&r->entry.lock); return 0; } /* was it recently expired? */ if( (*env->now - d->ttl) <= SUSPICION_RECENT_EXPIRY) { verbose(VERB_ALGO, "suspect glue at parent: " "rrset recently expired"); lock_rw_unlock(&r->entry.lock); return 1; } lock_rw_unlock(&r->entry.lock); } /* so, qinfo not there, does the other A/AAAA type exist in cache? */ r=rrset_cache_lookup(env->rrset_cache, qinfo->qname, qinfo->qname_len, (qinfo->qtype==LDNS_RR_TYPE_A)?LDNS_RR_TYPE_AAAA:LDNS_RR_TYPE_A, qinfo->qclass, 0, *env->now, 0); if(r) { /* it exists and explains why the glue is there */ lock_rw_unlock(&r->entry.lock); return 0; } /* neither exist, so logically, one should exist for a nameserver */ verbose(VERB_ALGO, "suspect glue at parent: " "neither A nor AAAA exist in cache"); return 1; } /** detect dependency cycle for query and target */ static int causes_cycle(struct module_qstate* qstate, uint8_t* name, size_t namelen, uint16_t t, uint16_t c) { struct query_info qinf; qinf.qname = name; qinf.qname_len = namelen; qinf.qtype = t; qinf.qclass = c; fptr_ok(fptr_whitelist_modenv_detect_cycle( qstate->env->detect_cycle)); return (*qstate->env->detect_cycle)(qstate, &qinf, (uint16_t)(BIT_RD|BIT_CD), qstate->is_priming); } void iter_mark_cycle_targets(struct module_qstate* qstate, struct delegpt* dp) { struct delegpt_ns* ns; for(ns = dp->nslist; ns; ns = ns->next) { if(ns->resolved) continue; /* see if this ns as target causes dependency cycle */ if(causes_cycle(qstate, ns->name, ns->namelen, LDNS_RR_TYPE_AAAA, qstate->qinfo.qclass) || causes_cycle(qstate, ns->name, ns->namelen, LDNS_RR_TYPE_A, qstate->qinfo.qclass)) { log_nametypeclass(VERB_QUERY, "skipping target due " "to dependency cycle (harden-glue: no may " "fix some of the cycles)", ns->name, LDNS_RR_TYPE_A, qstate->qinfo.qclass); ns->resolved = 1; } } } int iter_dp_is_useless(struct query_info* qinfo, uint16_t qflags, struct delegpt* dp) { struct delegpt_ns* ns; /* check: * o RD qflag is off. * o no addresses are provided. * o all NS items are required glue. * OR * o RD qflag is off. * o no addresses are provided. * o the query is for one of the nameservers in dp, * and that nameserver is a glue-name for this dp. */ if(!(qflags&BIT_RD)) return 0; /* either available or unused targets */ if(dp->usable_list || dp->result_list) return 0; /* see if query is for one of the nameservers, which is glue */ if( (qinfo->qtype == LDNS_RR_TYPE_A || qinfo->qtype == LDNS_RR_TYPE_AAAA) && dname_subdomain_c(qinfo->qname, dp->name) && delegpt_find_ns(dp, qinfo->qname, qinfo->qname_len)) return 1; for(ns = dp->nslist; ns; ns = ns->next) { if(ns->resolved) /* skip failed targets */ continue; if(!dname_subdomain_c(ns->name, dp->name)) return 0; /* one address is not required glue */ } return 1; } int iter_indicates_dnssec(struct module_env* env, struct delegpt* dp, struct dns_msg* msg, uint16_t dclass) { struct trust_anchor* a; /* information not available, !env->anchors can be common */ if(!env || !env->anchors || !dp || !dp->name) return 0; /* a trust anchor exists with this name, RRSIGs expected */ if((a=anchor_find(env->anchors, dp->name, dp->namelabs, dp->namelen, dclass))) { lock_basic_unlock(&a->lock); return 1; } /* see if DS rrset was given, in AUTH section */ if(msg && msg->rep && reply_find_rrset_section_ns(msg->rep, dp->name, dp->namelen, LDNS_RR_TYPE_DS, dclass)) return 1; return 0; } int iter_msg_has_dnssec(struct dns_msg* msg) { size_t i; if(!msg || !msg->rep) return 0; for(i=0; irep->an_numrrsets + msg->rep->ns_numrrsets; i++) { if(((struct packed_rrset_data*)msg->rep->rrsets[i]-> entry.data)->rrsig_count > 0) return 1; } /* empty message has no DNSSEC info, with DNSSEC the reply is * not empty (NSEC) */ return 0; } int iter_msg_from_zone(struct dns_msg* msg, struct delegpt* dp, enum response_type type, uint16_t dclass) { if(!msg || !dp || !msg->rep || !dp->name) return 0; /* SOA RRset - always from reply zone */ if(reply_find_rrset_section_an(msg->rep, dp->name, dp->namelen, LDNS_RR_TYPE_SOA, dclass) || reply_find_rrset_section_ns(msg->rep, dp->name, dp->namelen, LDNS_RR_TYPE_SOA, dclass)) return 1; if(type == RESPONSE_TYPE_REFERRAL) { size_t i; /* if it adds a single label, i.e. we expect .com, * and referral to example.com. NS ... , then origin zone * is .com. For a referral to sub.example.com. NS ... then * we do not know, since example.com. may be in between. */ for(i=0; irep->an_numrrsets+msg->rep->ns_numrrsets; i++) { struct ub_packed_rrset_key* s = msg->rep->rrsets[i]; if(ntohs(s->rk.type) == LDNS_RR_TYPE_NS && ntohs(s->rk.rrset_class) == dclass) { int l = dname_count_labels(s->rk.dname); if(l == dp->namelabs + 1 && dname_strict_subdomain(s->rk.dname, l, dp->name, dp->namelabs)) return 1; } } return 0; } log_assert(type==RESPONSE_TYPE_ANSWER || type==RESPONSE_TYPE_CNAME); /* not a referral, and not lame delegation (upwards), so, * any NS rrset must be from the zone itself */ if(reply_find_rrset_section_an(msg->rep, dp->name, dp->namelen, LDNS_RR_TYPE_NS, dclass) || reply_find_rrset_section_ns(msg->rep, dp->name, dp->namelen, LDNS_RR_TYPE_NS, dclass)) return 1; /* a DNSKEY set is expected at the zone apex as well */ /* this is for 'minimal responses' for DNSKEYs */ if(reply_find_rrset_section_an(msg->rep, dp->name, dp->namelen, LDNS_RR_TYPE_DNSKEY, dclass)) return 1; return 0; } /** * check equality of two rrsets * @param k1: rrset * @param k2: rrset * @return true if equal */ static int rrset_equal(struct ub_packed_rrset_key* k1, struct ub_packed_rrset_key* k2) { struct packed_rrset_data* d1 = (struct packed_rrset_data*) k1->entry.data; struct packed_rrset_data* d2 = (struct packed_rrset_data*) k2->entry.data; size_t i, t; if(k1->rk.dname_len != k2->rk.dname_len || k1->rk.flags != k2->rk.flags || k1->rk.type != k2->rk.type || k1->rk.rrset_class != k2->rk.rrset_class || query_dname_compare(k1->rk.dname, k2->rk.dname) != 0) return 0; if(d1->ttl != d2->ttl || d1->count != d2->count || d1->rrsig_count != d2->rrsig_count || d1->trust != d2->trust || d1->security != d2->security) return 0; t = d1->count + d1->rrsig_count; for(i=0; irr_len[i] != d2->rr_len[i] || d1->rr_ttl[i] != d2->rr_ttl[i] || memcmp(d1->rr_data[i], d2->rr_data[i], d1->rr_len[i]) != 0) return 0; } return 1; } int reply_equal(struct reply_info* p, struct reply_info* q) { size_t i; if(p->flags != q->flags || p->qdcount != q->qdcount || p->ttl != q->ttl || p->security != q->security || p->an_numrrsets != q->an_numrrsets || p->ns_numrrsets != q->ns_numrrsets || p->ar_numrrsets != q->ar_numrrsets || p->rrset_count != q->rrset_count) return 0; for(i=0; irrset_count; i++) { if(!rrset_equal(p->rrsets[i], q->rrsets[i])) return 0; } return 1; } void iter_store_inzone_glue(struct module_env* env, struct query_info* qinfo, struct reply_info* rep) { struct rrset_ref ref; struct ub_packed_rrset_key* rrset; if(qinfo->qtype != LDNS_RR_TYPE_A && qinfo->qtype != LDNS_RR_TYPE_AAAA) return; rrset = reply_find_rrset(rep, qinfo->qname, qinfo->qname_len, qinfo->qtype, qinfo->qclass); if(!rrset) return; /* got A or AAAA glue rrset. store it in case its handy */ rrset = packed_rrset_copy_alloc(rrset, env->alloc, *env->now); if(!rrset) { log_err("malloc failure in store_inzone_glue"); return; } rrset->rk.flags |= PACKED_RRSET_PARENT_SIDE; rrset->entry.hash = rrset_key_hash(&rrset->rk); ref.key = rrset; ref.id = rrset->id; /* ignore ret: it was in the cache, ref updated */ (void)rrset_cache_update(env->rrset_cache, &ref, env->alloc, *env->now); } int iter_lookup_inzone_glue(struct module_env* env, struct delegpt* dp, struct regional* region, struct query_info* qinfo) { struct ub_packed_rrset_key* akey; akey = rrset_cache_lookup(env->rrset_cache, qinfo->qname, qinfo->qname_len, qinfo->qtype, qinfo->qclass, PACKED_RRSET_PARENT_SIDE, *env->now, 0); if(akey) { if(qinfo->qtype == LDNS_RR_TYPE_A) { if(!delegpt_add_rrset_A(dp, region, akey, 1, 1)) { lock_rw_unlock(&akey->entry.lock); return 0; } } else if(qinfo->qtype == LDNS_RR_TYPE_AAAA) { if(!delegpt_add_rrset_AAAA(dp, region, akey, 1, 1)) { lock_rw_unlock(&akey->entry.lock); return 0; } } lock_rw_unlock(&akey->entry.lock); } return 1; }