iterator and dns cache work.

git-svn-id: file:///svn/unbound/trunk@342 be551aaa-1e26-0410-a405-d3ace91eadb9
This commit is contained in:
Wouter Wijngaards 2007-05-25 15:28:20 +00:00
parent 265993017d
commit 5def8556c6
10 changed files with 580 additions and 8 deletions

View file

@ -5,6 +5,8 @@
- packed rrset key has type and class as easily accessable struct
members. They are still kept in network format for fast msg encode.
- dns cache find_delegation routine.
- iterator main functions setup.
- dns cache lookup setup.
24 May 2007: Wouter
- small changes to prepare for subqueries.

View file

@ -82,7 +82,7 @@ iter_apply_cfg(struct iter_env* iter_env, struct config_file* cfg)
return 0;
}
verbose(VERB_ALGO, "iterator: fwd queries to: %s %d",
cfg->fwd_address, cfg->fwd_port);
cfg->fwd_address, cfg->fwd_port);
}
return 1;
}

View file

@ -85,6 +85,31 @@ iter_deinit(struct module_env* env, int id)
/** new query for iterator */
static int
iter_new(struct module_qstate* qstate, int id)
{
struct iter_qstate* iq = (struct iter_qstate*)region_alloc(
qstate->region, sizeof(struct iter_qstate));
qstate->minfo[id] = iq;
if(!iq)
return 0;
memset(iq, 0, sizeof(*iq));
iq->state = INIT_REQUEST_STATE;
iq->final_state = FINISHED_STATE;
iq->prepend_list = NULL;
iq->prepend_last = NULL;
iq->dp = NULL;
iq->current_target = NULL;
iq->num_target_queries = -1; /* default our targetQueries counter. */
iq->num_current_queries = 0;
iq->query_restart_count = 0;
iq->referral_count = 0;
iq->priming_stub = 0;
outbound_list_init(&iq->outlist);
return 1;
}
/** new query for iterator in forward mode */
static int
fwd_new(struct module_qstate* qstate, int id)
{
struct iter_qstate* iq = (struct iter_qstate*)region_alloc(
qstate->region, sizeof(struct iter_qstate));
@ -98,7 +123,6 @@ iter_new(struct module_qstate* qstate, int id)
return 0;
memset(iq, 0, sizeof(*iq));
outbound_list_init(&iq->outlist);
iq->num_target_queries = -1; /* default our targetQueries counter. */
if(qstate->qinfo.has_cd)
flags |= BIT_CD;
e = (*env->send_query)(qstate->qinfo.qname, qstate->qinfo.qnamesize,
@ -147,6 +171,11 @@ perform_forward(struct module_qstate* qstate, enum module_ev event, int id,
struct outbound_entry* outbound)
{
verbose(VERB_ALGO, "iterator: forwarding");
if(event == module_event_new) {
if(!fwd_new(qstate, id))
qstate->ext_state[id] = module_error;
return;
}
/* it must be a query reply */
if(!outbound) {
verbose(VERB_ALGO, "query reply was not serviced");
@ -166,23 +195,355 @@ perform_forward(struct module_qstate* qstate, enum module_ev event, int id,
qstate->ext_state[id] = module_error;
}
/**
* Transition to the next state. This can be used to advance a currently
* processing event. It cannot be used to reactivate a forEvent.
*
* @param qstate: query state
* @param iq: iterator query state
* @param nextstate The state to transition to.
* @return true. This is so this can be called as the return value for the
* actual process*State() methods. (Transitioning to the next state
* implies further processing).
*/
static int
next_state(struct module_qstate* qstate, struct iter_qstate* iq,
enum iter_state nextstate)
{
/* If transitioning to a "response" state, make sure that there is a
* response */
if(iter_state_is_responsestate(nextstate)) {
if(qstate->reply == NULL) {
log_err("transitioning to response state sans "
"response.");
}
}
iq->state = nextstate;
return 1;
}
/**
* Transition an event to its final state. Final states always either return
* a result up the module chain, or reactivate a dependent event. Which
* final state to transtion to is set in the module state for the event when
* it was created, and depends on the original purpose of the event.
*
* The response is stored in the qstate->buf buffer.
*
* @param qstate: query state
* @param iq: iterator query state
* @return false. This is so this method can be used as the return value for
* the processState methods. (Transitioning to the final state
*/
static int
final_state(struct module_qstate* qstate, struct iter_qstate* iq)
{
return next_state(qstate, iq, iq->final_state);
}
/**
* Return an error to the client
*/
static int
error_response(struct module_qstate* qstate, struct iter_qstate* iq, int rcode)
{
log_info("err response %s", ldns_lookup_by_id(ldns_rcodes, rcode)?
ldns_lookup_by_id(ldns_rcodes, rcode)->name:"??");
qinfo_query_encode(qstate->buf, &qstate->qinfo);
LDNS_RCODE_SET(ldns_buffer_begin(qstate->buf), rcode);
LDNS_QR_SET(ldns_buffer_begin(qstate->buf));
return final_state(qstate, iq);
}
/**
* Process the initial part of the request handling. This state roughly
* corresponds to resolver algorithms steps 1 (find answer in cache) and 2
* (find the best servers to ask).
*
* Note that all requests start here, and query restarts revisit this state.
*
* This state either generates: 1) a response, from cache or error, 2) a
* priming event, or 3) forwards the request to the next state (init2,
* generally).
*
* @param qstate: query state.
* @param iq: iterator query state.
* @param ie: iterator shared global environment.
* @return true if the event needs more request processing immediately,
* false if not.
*/
static int
processInitRequest(struct module_qstate* qstate, struct iter_qstate* iq,
struct iter_env* ie)
{
int d;
uint8_t* delname;
size_t delnamelen;
log_nametypeclass("resolving", qstate->qinfo.qname,
qstate->qinfo.qtype, qstate->qinfo.qclass);
/* check effort */
/* We enforce a maximum number of query restarts. This is primarily a
* cheap way to prevent CNAME loops. */
if(iq->query_restart_count > MAX_RESTART_COUNT) {
verbose(VERB_DETAIL, "request has exceeded the maximum number"
" of query restarts with %d", iq->query_restart_count);
return error_response(qstate, iq, LDNS_RCODE_SERVFAIL);
}
/* We enforce a maximum recursion/dependency depth -- in general,
* this is unnecessary for dependency loops (although it will
* catch those), but it provides a sensible limit to the amount
* of work required to answer a given query. */
d = module_subreq_depth(qstate);
verbose(VERB_ALGO, "request has dependency depth of %d", d);
if(d > ie->max_dependency_depth) {
verbose(VERB_DETAIL, "request has exceeded the maximum "
"dependency depth with depth of %d", d);
return error_response(qstate, iq, LDNS_RCODE_SERVFAIL);
}
/* Resolver Algorithm Step 1 -- Look for the answer in local data. */
/* This either results in a query restart (CNAME cache response), a
* terminating response (ANSWER), or a cache miss (null). */
/* TODO: cache lookup */
/* lookup qname, qtype qclass */
/* TODO: handle positive cache response */
/* calc response type (from cache msg) */
/* if cname */
/* handle cname, overwrite qname, restart */
/* it is an answer, response, to final state */
/* TODO attempt to forward the request */
/* TODO attempt to find a covering DNAME in the cache */
/* Resolver Algorithm Step 2 -- find the "best" servers. */
/* first, adjust for DS queries. To avoid the grandparent problem,
* we just look for the closest set of server to the parent of qname.
*/
delname = qstate->qinfo.qname;
delnamelen = qstate->qinfo.qnamesize;
if(qstate->qinfo.qtype == LDNS_RR_TYPE_DS && delname[0] != 0) {
/* do not adjust root label */
size_t lablen = delname[0] + 1;
delname += lablen;
delnamelen -= lablen;
}
/* Lookup the delegation in the cache. If null, then the cache needs
* to be primed for the qclass. */
iq->dp = dns_cache_find_delegation(qstate->env, delname, delnamelen,
qstate->qinfo.qclass, qstate->region);
/* If the cache has returned nothing, then we have a root priming
* situation. */
if(iq->dp == NULL) {
/* Note that the result of this will set a new
* DelegationPoint based on the result of priming. */
/* TODO
if(!prime_root(qstate, iq, ie, qstate->qinfo.qclass))
return error_response(qstate, iq, LDNS_RCODE_SERVFAIL);
*/
/* priming creates an sends a subordinate query, with
* this query as the parent. So further processing for
* this event will stop until reactivated by the results
* of priming. */
return false;
}
/* Reset the RD flag. If this is a query restart, then the RD
* will have been turned off. */
/*
TODO store original flags and original qinfo
qstate->query_flags |= (qstate->orig_query_flags & BIT_RD);
*/
/* Otherwise, set the current delegation point and move on to the
* next state. */
return next_state(qstate, iq, INIT_REQUEST_2_STATE);
}
#if 0
/** TODO */
static int
processInitRequest2(struct module_qstate* qstate, struct iter_qstate* iq,
struct iter_env* ie)
{
return 0;
}
/** TODO */
static int
processInitRequest3(struct module_qstate* qstate, struct iter_qstate* iq,
struct iter_env* ie)
{
return 0;
}
/** TODO */
static int
processQueryTargets(struct module_qstate* qstate, struct iter_qstate* iq,
struct iter_env* ie)
{
return 0;
}
/** TODO */
static int
processQueryResponse(struct module_qstate* qstate, struct iter_qstate* iq,
struct iter_env* ie)
{
return 0;
}
/** TODO */
static int
processPrimeResponse(struct module_qstate* qstate, struct iter_qstate* iq,
struct iter_env* ie)
{
return 0;
}
/** TODO */
static int
processTargetResponse(struct module_qstate* qstate, struct iter_qstate* iq,
struct iter_env* ie)
{
return 0;
}
/** TODO */
static int
processFinished(struct module_qstate* qstate, struct iter_qstate* iq,
struct iter_env* ie)
{
return 0;
}
#endif
/**
* Handle iterator state.
* Handle events. This is the real processing loop for events, responsible
* for moving events through the various states. If a processing method
* returns true, then it will be advanced to the next state. If false, then
* processing will stop.
*
* @param qstate: query state.
* @param ie: iterator shared global environment.
* @param iq: iterator query state.
*/
static void
iter_handle(struct module_qstate* qstate, struct iter_qstate* iq,
struct iter_env* ie)
{
int cont = 1;
while(cont) {
verbose(VERB_ALGO, "iter_handle processing q with state %s",
iter_state_to_string(iq->state));
switch(iq->state) {
case INIT_REQUEST_STATE:
cont = processInitRequest(qstate, iq, ie);
break;
#if 0
case INIT_REQUEST_2_STATE:
cont = processInitRequest2(qstate, iq, ie);
break;
case INIT_REQUEST_3_STATE:
cont = processInitRequest3(qstate, iq, ie);
break;
case QUERYTARGETS_STATE:
cont = processQueryTargets(qstate, iq, ie);
break;
case QUERY_RESP_STATE:
cont = processQueryResponse(qstate, iq, ie);
break;
case PRIME_RESP_STATE:
cont = processPrimeResponse(qstate, iq, ie);
break;
case TARGET_RESP_STATE:
cont = processTargetResponse(qstate, iq, ie);
break;
case FINISHED_STATE:
cont = processFinished(qstate, iq, ie);
break;
#endif
default:
log_warn("iterator: invalid state: %d",
iq->state);
cont = 0;
break;
}
}
}
/**
* This is the primary entry point for processing request events. Note that
* this method should only be used by external modules.
* @param qstate: query state.
* @param ie: iterator shared global environment.
* @param iq: iterator query state.
*/
static void
process_request(struct module_qstate* qstate, struct iter_qstate* iq,
struct iter_env* ie)
{
/* external requests start in the INIT state, and finish using the
* FINISHED state. */
iq->state = INIT_REQUEST_STATE;
iq->final_state = FINISHED_STATE;
verbose(VERB_ALGO, "process_request: new external request event");
iter_handle(qstate, iq, ie);
}
/** process authoritative server reply */
static void
process_response(struct module_qstate* qstate, struct iter_qstate* iq,
struct iter_env* ie, struct outbound_entry* outbound)
{
verbose(VERB_ALGO, "process_response: new external response event");
/* TODO outbound: use it for scrubbing and so on */
iq->state = QUERY_RESP_STATE;
iter_handle(qstate, iq, ie);
}
/** iterator operate on a query */
static void
iter_operate(struct module_qstate* qstate, enum module_ev event, int id,
struct outbound_entry* outbound)
{
struct iter_env* ie = (struct iter_env*)qstate->env->modinfo[id];
struct iter_qstate* iq;
verbose(VERB_ALGO, "iterator[module %d] operate: extstate:%s event:%s",
id, strextstate(qstate->ext_state[id]), strmodulevent(event));
if(event == module_event_new) {
if(!iter_new(qstate, id))
qstate->ext_state[id] = module_error;
return;
}
if(ie->fwd_addrlen != 0) {
perform_forward(qstate, event, id, outbound);
return;
}
/* perform iterator state machine */
if(event == module_event_new) {
log_info("iter state machine");
if(!iter_new(qstate, id)) {
qstate->ext_state[id] = module_error;
return;
}
iq = (struct iter_qstate*)qstate->minfo[id];
process_request(qstate, iq, ie);
return;
}
iq = (struct iter_qstate*)qstate->minfo[id];
if(event == module_event_reply) {
process_response(qstate, iq, ie, outbound);
return;
}
/* TODO: uhh */
log_err("bad event for iterator");
qstate->ext_state[id] = module_error;
}
@ -238,3 +599,18 @@ iter_state_to_string(enum iter_state state)
return "UNKNOWN ITER STATE";
}
}
int
iter_state_is_responsestate(enum iter_state s)
{
switch(s) {
case INIT_REQUEST_STATE :
case INIT_REQUEST_2_STATE :
case INIT_REQUEST_3_STATE :
case QUERYTARGETS_STATE :
return 0;
default:
break;
}
return 1;
}

View file

@ -48,6 +48,9 @@ struct delegpt;
struct packed_rrset_list;
struct iter_hints;
/** max number of query restarts. Determines max number of CNAME chain. */
#define MAX_RESTART_COUNT 8
/**
* Global state for the iterator.
*/
@ -212,4 +215,11 @@ struct module_func_block* iter_get_funcblock();
*/
const char* iter_state_to_string(enum iter_state state);
/**
* See if iterator state is a response state
* @param s: to inspect
* @return true if response state.
*/
int iter_state_is_responsestate(enum iter_state s);
#endif /* ITERATOR_ITERATOR_H */

117
services/cache/dns.c vendored
View file

@ -46,6 +46,7 @@
#include "util/data/packed_rrset.h"
#include "util/module.h"
#include "util/net_help.h"
#include "util/region-allocator.h"
/** store rrsets in the rrset cache. */
static void
@ -229,3 +230,119 @@ dns_cache_find_delegation(struct module_env* env, uint8_t* qname,
delegpt_log(dp);
return dp;
}
/** allocate rrset in region - no more locks needed */
static struct ub_packed_rrset_key*
copy_rrset(struct ub_packed_rrset_key* key, struct region* region)
{
/* lock, lrutouch rrset in cache */
return NULL;
}
/** allocate dns_msg from query_info and reply_info */
static struct dns_msg*
tomsg(struct msgreply_entry* e, struct reply_info* r, struct region* region)
{
struct dns_msg* msg = (struct dns_msg*)region_alloc(region,
sizeof(struct dns_msg));
size_t i;
if(!msg)
return NULL;
memcpy(&msg->qinfo, &e->key, sizeof(struct query_info));
msg->qinfo.qname = region_alloc_init(region, e->key.qname,
e->key.qnamesize);
if(!msg->qinfo.qname)
return NULL;
/* allocate replyinfo struct and rrset key array separately */
msg->rep = (struct reply_info*)region_alloc(region,
sizeof(struct reply_info) - sizeof(struct rrset_ref));
if(!msg->rep)
return NULL;
memcpy(msg->rep, r,
sizeof(struct reply_info) - sizeof(struct rrset_ref));
msg->rep->rrsets = (struct ub_packed_rrset_key**)region_alloc(region,
msg->rep->rrset_count * sizeof(struct ub_packed_rrset_key*));
if(!msg->rep->rrsets)
return NULL;
/* try to lock all of the rrsets we need */
for(i=0; i<msg->rep->rrset_count; i++) {
msg->rep->rrsets[i] = copy_rrset(r->rrsets[i], region);
if(!msg->rep->rrsets[i])
return NULL;
}
return msg;
}
/** allocate dns_msg from CNAME record */
static struct dns_msg*
cnamemsg(uint8_t* qname, size_t qnamelen, struct ub_packed_rrset_key* rrset,
struct packed_rrset_data* d, struct region* region)
{
struct dns_msg* msg = (struct dns_msg*)region_alloc(region,
sizeof(struct dns_msg));
if(!msg)
return NULL;
msg->qinfo.qnamesize = rrset->rk.dname_len;
msg->qinfo.qname = region_alloc_init(region, rrset->rk.dname,
rrset->rk.dname_len);
if(!msg->qinfo.qname)
return NULL;
msg->qinfo.has_cd = (rrset->rk.flags&PACKED_RRSET_CD)?1:0;
msg->qinfo.qtype = LDNS_RR_TYPE_CNAME;
msg->qinfo.qclass = ntohs(rrset->rk.rrset_class);
/* TODO create reply info with the CNAME */
return NULL;
}
struct dns_msg*
dns_cache_lookup(struct module_env* env,
uint8_t* qname, size_t qnamelen, uint16_t qtype, uint16_t qclass,
int has_cd, struct region* region)
{
struct lruhash_entry* e;
struct query_info k;
hashvalue_t h;
uint32_t now = (uint32_t)time(NULL);
struct ub_packed_rrset_key* rrset;
/* lookup first, this has both NXdomains and ANSWER responses */
k.qname = qname;
k.qnamesize = qnamelen;
k.qtype = qtype;
k.qclass = qclass;
k.has_cd = has_cd;
h = query_info_hash(&k);
e = slabhash_lookup(env->msg_cache, h, &k, 0);
if(e) {
/* check ttl */
struct msgreply_entry* key = (struct msgreply_entry*)e->key;
struct reply_info* data = (struct reply_info*)e->data;
if(now <= data->ttl) {
struct dns_msg* msg = tomsg(key, data, region);
lock_rw_unlock(&e->lock);
return msg;
}
lock_rw_unlock(&e->lock);
}
/* see if we have a CNAME for this domain */
rrset = rrset_cache_lookup(env->rrset_cache, qname, qnamelen,
LDNS_RR_TYPE_CNAME, qclass,
(uint32_t)(has_cd?PACKED_RRSET_CD:0), now, 0);
if(rrset) {
struct packed_rrset_data* d = (struct packed_rrset_data*)
rrset->entry.data;
if(now <= d->ttl) {
/* construct CNAME response */
struct dns_msg* msg = cnamemsg(qname, qnamelen, rrset,
d, region);
lock_rw_unlock(&rrset->entry.lock);
return msg;
}
lock_rw_unlock(&rrset->entry.lock);
}
/* construct DS, DNSKEY messages from rrset cache. TODO */
return NULL;
}

28
services/cache/dns.h vendored
View file

@ -42,12 +42,23 @@
#ifndef SERVICES_CACHE_DNS_H
#define SERVICES_CACHE_DNS_H
#include "util/storage/lruhash.h"
#include "util/data/msgreply.h"
struct module_env;
struct query_info;
struct reply_info;
struct region;
struct delegpt;
/**
* Region allocated message reply
*/
struct dns_msg {
/** query info */
struct query_info qinfo;
/** reply info - ptr to packed repinfo structure */
struct reply_info *rep;
};
/**
* Store message in the cache. Stores in message cache and rrset cache.
* Both qinfo and rep should be malloced and are put in the cache.
@ -76,7 +87,22 @@ struct delegpt* dns_cache_find_delegation(struct module_env* env,
uint8_t* qname, size_t qnamelen, uint16_t qclass,
struct region* region);
/** Find cached message */
/**
* Find cached message
* @param env: module environment with the DNS cache.
* @param qname: query name.
* @param qnamelen: length of qname.
* @param qtype: query type.
* @param qclass: query class.
* @param has_cd: if true, CD flag is turned on for lookup.
* @param region: where to allocate result.
* @return new response message (alloced in region, rrsets do not have IDs).
* or NULL on error or if not found in cache.
*/
struct dns_msg* dns_cache_lookup(struct module_env* env,
uint8_t* qname, size_t qnamelen, uint16_t qtype, uint16_t qclass,
int has_cd, struct region* region);
/** Find covering DNAME */
#endif /* SERVICES_CACHE_DNS_H */

View file

@ -87,3 +87,14 @@ module_subreq_remove(struct module_qstate* sub)
p = p->subquery_next;
}
}
int
module_subreq_depth(struct module_qstate* sub)
{
int d = 0;
while(sub->parent) {
d++;
sub = sub->parent;
}
return d;
}

View file

@ -275,4 +275,11 @@ const char* strmodulevent(enum module_ev e);
*/
void module_subreq_remove(struct module_qstate* sub);
/**
* Calculate depth of subrequest
* @param sub: the subrequest. parent point is used.
* @return: depth > 0 for subrequests.
*/
int module_subreq_depth(struct module_qstate* sub);
#endif /* UTIL_MODULE_H */

View file

@ -40,6 +40,7 @@
#include "config.h"
#include "util/net_help.h"
#include "util/log.h"
#include "util/data/dname.h"
#include <fcntl.h>
/** returns true is string addr is an ip6 specced address. */
@ -176,3 +177,15 @@ ipstrtoaddr(const char* ip, int port, struct sockaddr_storage* addr,
}
return 1;
}
void
log_nametypeclass(const char* str, uint8_t* name, uint16_t type,
uint16_t dclass)
{
char buf[LDNS_MAX_DOMAINLEN+1];
dname_str(name, buf);
log_info("%s <%s %s %s>", str, buf,
ldns_rr_descript(type)?ldns_rr_descript(type)->_name: "??",
ldns_lookup_by_id(ldns_rr_classes, (int)dclass)?
ldns_lookup_by_id(ldns_rr_classes, (int)dclass)->name:"??");
}

View file

@ -134,4 +134,14 @@ void log_addr(const char* str, struct sockaddr_storage* addr,
int ipstrtoaddr(const char* ip, int port, struct sockaddr_storage* addr,
socklen_t* addrlen);
/**
* Print string with neat domain name, type and class.
* @param str: string of message.
* @param name: domain name uncompressed wireformat.
* @param type: host format RR type.
* @param dclass: host format RR class.
*/
void log_nametypeclass(const char* str, uint8_t* name, uint16_t type,
uint16_t dclass);
#endif /* NET_HELP_H */