- Fix #594. libunbound: optionally use libnettle for crypto.

Contributed by Luca Bruno.  Added --with-nettle for use with
  --with-libunbound-only.


git-svn-id: file:///svn/unbound/trunk@3533 be551aaa-1e26-0410-a405-d3ace91eadb9
This commit is contained in:
Wouter Wijngaards 2015-11-17 09:43:07 +00:00
parent 2d8d820e07
commit 2bdea62a9e
12 changed files with 701 additions and 68 deletions

View file

@ -38,6 +38,7 @@ UNBOUND_VERSION_MINOR=@UNBOUND_VERSION_MINOR@
UNBOUND_VERSION_MICRO=@UNBOUND_VERSION_MICRO@
ALLTARGET=@ALLTARGET@
INSTALLTARGET=@INSTALLTARGET@
SSLLIB=@SSLLIB@
# _unbound.la if pyunbound enabled.
PYUNBOUND_TARGET=@PYUNBOUND_TARGET@
@ -295,22 +296,22 @@ longtest: tests
lib: libunbound.la unbound.h
libunbound.la: $(LIBUNBOUND_OBJ_LINK)
$(LINK_LIB) $(UBSYMS) -o $@ $(LIBUNBOUND_OBJ_LINK) -rpath $(libdir) -lssl $(LIBS)
$(LINK_LIB) $(UBSYMS) -o $@ $(LIBUNBOUND_OBJ_LINK) -rpath $(libdir) $(SSLLIB) $(LIBS)
unbound$(EXEEXT): $(DAEMON_OBJ_LINK) libunbound.la
$(LINK) -o $@ $(DAEMON_OBJ_LINK) $(EXTRALINK) -lssl $(LIBS)
$(LINK) -o $@ $(DAEMON_OBJ_LINK) $(EXTRALINK) $(SSLLIB) $(LIBS)
unbound-checkconf$(EXEEXT): $(CHECKCONF_OBJ_LINK) libunbound.la
$(LINK) -o $@ $(CHECKCONF_OBJ_LINK) $(EXTRALINK) -lssl $(LIBS)
$(LINK) -o $@ $(CHECKCONF_OBJ_LINK) $(EXTRALINK) $(SSLLIB) $(LIBS)
unbound-control$(EXEEXT): $(CONTROL_OBJ_LINK) libunbound.la
$(LINK) -o $@ $(CONTROL_OBJ_LINK) $(EXTRALINK) -lssl $(LIBS)
$(LINK) -o $@ $(CONTROL_OBJ_LINK) $(EXTRALINK) $(SSLLIB) $(LIBS)
unbound-host$(EXEEXT): $(HOST_OBJ_LINK) libunbound.la
$(LINK) -o $@ $(HOST_OBJ_LINK) -L. -L.libs -lunbound $(LIBS)
unbound-anchor$(EXEEXT): $(UBANCHOR_OBJ_LINK) libunbound.la
$(LINK) -o $@ $(UBANCHOR_OBJ_LINK) -L. -L.libs -lunbound -lexpat -lssl $(LIBS)
$(LINK) -o $@ $(UBANCHOR_OBJ_LINK) -L. -L.libs -lunbound -lexpat $(SSLLIB) $(LIBS)
unbound-service-install$(EXEEXT): $(SVCINST_OBJ_LINK)
$(LINK) -o $@ $(SVCINST_OBJ_LINK) $(LIBS)
@ -322,37 +323,37 @@ anchor-update$(EXEEXT): $(ANCHORUPD_OBJ_LINK) libunbound.la
$(LINK) -o $@ $(ANCHORUPD_OBJ_LINK) -L. -L.libs -lunbound $(LIBS)
unittest$(EXEEXT): $(UNITTEST_OBJ_LINK)
$(LINK) -o $@ $(UNITTEST_OBJ_LINK) -lssl $(LIBS)
$(LINK) -o $@ $(UNITTEST_OBJ_LINK) $(SSLLIB) $(LIBS)
testbound$(EXEEXT): $(TESTBOUND_OBJ_LINK)
$(LINK) -o $@ $(TESTBOUND_OBJ_LINK) -lssl $(LIBS)
$(LINK) -o $@ $(TESTBOUND_OBJ_LINK) $(SSLLIB) $(LIBS)
lock-verify$(EXEEXT): $(LOCKVERIFY_OBJ_LINK)
$(LINK) -o $@ $(LOCKVERIFY_OBJ_LINK) -lssl $(LIBS)
$(LINK) -o $@ $(LOCKVERIFY_OBJ_LINK) $(SSLLIB) $(LIBS)
petal$(EXEEXT): $(PETAL_OBJ_LINK)
$(LINK) -o $@ $(PETAL_OBJ_LINK) -lssl $(LIBS)
$(LINK) -o $@ $(PETAL_OBJ_LINK) $(SSLLIB) $(LIBS)
pktview$(EXEEXT): $(PKTVIEW_OBJ_LINK)
$(LINK) -o $@ $(PKTVIEW_OBJ_LINK) -lssl $(LIBS)
$(LINK) -o $@ $(PKTVIEW_OBJ_LINK) $(SSLLIB) $(LIBS)
memstats$(EXEEXT): $(MEMSTATS_OBJ_LINK)
$(LINK) -o $@ $(MEMSTATS_OBJ_LINK) -lssl $(LIBS)
$(LINK) -o $@ $(MEMSTATS_OBJ_LINK) $(SSLLIB) $(LIBS)
asynclook$(EXEEXT): $(ASYNCLOOK_OBJ_LINK) libunbound.la
$(LINK) -o $@ $(ASYNCLOOK_OBJ_LINK) $(LIBS) -L. -L.libs -lunbound
streamtcp$(EXEEXT): $(STREAMTCP_OBJ_LINK)
$(LINK) -o $@ $(STREAMTCP_OBJ_LINK) -lssl $(LIBS)
$(LINK) -o $@ $(STREAMTCP_OBJ_LINK) $(SSLLIB) $(LIBS)
perf$(EXEEXT): $(PERF_OBJ_LINK)
$(LINK) -o $@ $(PERF_OBJ_LINK) -lssl $(LIBS)
$(LINK) -o $@ $(PERF_OBJ_LINK) $(SSLLIB) $(LIBS)
delayer$(EXEEXT): $(DELAYER_OBJ_LINK)
$(LINK) -o $@ $(DELAYER_OBJ_LINK) -lssl $(LIBS)
$(LINK) -o $@ $(DELAYER_OBJ_LINK) $(SSLLIB) $(LIBS)
signit$(EXEEXT): testcode/signit.c
$(CC) $(CPPFLAGS) $(CFLAGS) -o $@ testcode/signit.c $(LDFLAGS) -lldns -lssl $(LIBS)
$(CC) $(CPPFLAGS) $(CFLAGS) -o $@ testcode/signit.c $(LDFLAGS) -lldns $(SSLLIB) $(LIBS)
unbound.h: $(srcdir)/libunbound/unbound.h
sed -e 's/@''UNBOUND_VERSION_MAJOR@/$(UNBOUND_VERSION_MAJOR)/' -e 's/@''UNBOUND_VERSION_MINOR@/$(UNBOUND_VERSION_MINOR)/' -e 's/@''UNBOUND_VERSION_MICRO@/$(UNBOUND_VERSION_MICRO)/' < $(srcdir)/libunbound/unbound.h > $@

View file

@ -46,7 +46,12 @@
#include <errno.h>
#include <unistd.h>
#include <time.h>
#if defined(HAVE_SSL)
#include <openssl/sha.h>
#elif defined(HAVE_NETTLE)
#include <nettle/sha.h>
#endif
#include <linux/types.h>
#include <linux/random.h>
@ -67,9 +72,21 @@
HD(b); \
} while (0)
#if defined(HAVE_SSL)
#define CRYPTO_SHA512_CTX SHA512_CTX
#define CRYPTO_SHA512_INIT(x) SHA512_Init(x)
#define CRYPTO_SHA512_FINAL(r, c) SHA512_Final(r, c)
#define HR(x, l) (SHA512_Update(&ctx, (char *)(x), (l)))
#define HD(x) (SHA512_Update(&ctx, (char *)&(x), sizeof (x)))
#define HF(x) (SHA512_Update(&ctx, (char *)&(x), sizeof (void*)))
#elif defined(HAVE_NETTLE)
#define CRYPTO_SHA512_CTX struct sha512_ctx
#define CRYPTO_SHA512_INIT(x) sha512_init(x)
#define CRYPTO_SHA512_FINAL(r, c) sha512_digest(c, SHA512_DIGEST_SIZE, r)
#define HR(x, l) (sha512_update(&ctx, (l), (uint8_t *)(x)))
#define HD(x) (sha512_update(&ctx, sizeof (x), (uint8_t *)&(x)))
#define HF(x) (sha512_update(&ctx, sizeof (void*), (uint8_t *)&(x)))
#endif
int getentropy(void *buf, size_t len);
@ -337,7 +354,7 @@ getentropy_fallback(void *buf, size_t len)
struct rusage ru;
sigset_t sigset;
struct stat st;
SHA512_CTX ctx;
CRYPTO_SHA512_CTX ctx;
static pid_t lastpid;
pid_t pid;
size_t i, ii, m;
@ -354,7 +371,7 @@ getentropy_fallback(void *buf, size_t len)
}
for (i = 0; i < len; ) {
int j;
SHA512_Init(&ctx);
CRYPTO_SHA512_INIT(&ctx);
for (j = 0; j < repeat; j++) {
HX((e = gettimeofday(&tv, NULL)) == -1, tv);
if (e != -1) {
@ -526,7 +543,7 @@ getentropy_fallback(void *buf, size_t len)
# endif
#endif /* HAVE_GETAUXVAL */
SHA512_Final(results, &ctx);
CRYPTO_SHA512_FINAL(results, &ctx);
memcpy((char*)buf + i, results, min(sizeof(results), len - i));
i += min(sizeof(results), len - i);
}

View file

@ -242,6 +242,9 @@
/* Define to 1 if you have the <netinet/in.h> header file. */
#undef HAVE_NETINET_IN_H
/* Use libnettle for crypto */
#undef HAVE_NETTLE
/* Use libnss for crypto */
#undef HAVE_NSS

42
configure vendored
View file

@ -661,6 +661,7 @@ CHECKLOCK_OBJ
staticexe
UNBOUND_EVENT_UNINSTALL
UNBOUND_EVENT_INSTALL
SSLLIB
HAVE_SSL
CONFIG_DATE
NETBSD_LINTFLAGS
@ -823,6 +824,7 @@ with_solaris_threads
with_pyunbound
with_pythonmodule
with_nss
with_nettle
with_ssl
enable_sha2
enable_gost
@ -1534,6 +1536,7 @@ Optional Packages:
--with-pythonmodule build Python module, or --without-pythonmodule to
disable script engine. (default=no)
--with-nss=path use libnss instead of openssl, installed at path.
--with-nettle=path use libnettle as crypto library, installed at path.
--with-ssl=pathname enable SSL (will check /usr/local/ssl /usr/lib/ssl
/usr/ssl /usr/pkg /usr/local /opt/local /usr/sfw
/usr)
@ -16408,13 +16411,44 @@ $as_echo "#define HAVE_NSS 1" >>confdefs.h
CPPFLAGS="-I/usr/include/nspr4 $CPPFLAGS"
fi
LIBS="$LIBS -lnss3 -lnspr4"
SSLLIB=""
fi
# libnettle
USE_NETTLE="no"
# Check whether --with-nettle was given.
if test "${with_nettle+set}" = set; then :
withval=$with_nettle;
USE_NETTLE="yes"
$as_echo "#define HAVE_NETTLE 1" >>confdefs.h
if test "$withval" != "" -a "$withval" != "yes"; then
CPPFLAGS="$CPPFLAGS -I$withval/include/nettle"
LDFLAGS="$LDFLAGS -L$withval/lib"
if test "x$enable_rpath" = xyes; then
if echo "$withval/lib" | grep "^/" >/dev/null; then
RUNTIME_PATH="$RUNTIME_PATH -R$withval/lib"
fi
fi
else
CPPFLAGS="$CPPFLAGS -I/usr/include/nettle"
fi
LIBS="$LIBS -lhogweed -lnettle -lgmp"
SSLLIB=""
fi
# openssl
if test $USE_NSS = "no"; then
if test $USE_NSS = "no" -a $USE_NETTLE = "no"; then
# Check whether --with-ssl was given.
@ -16720,6 +16754,7 @@ fi
fi
rm -f core conftest.err conftest.$ac_objext \
conftest$ac_exeext conftest.$ac_ext
SSLLIB="-lssl"
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for LibreSSL" >&5
$as_echo_n "checking for LibreSSL... " >&6; }
if grep VERSION_TEXT $ssldir/include/openssl/opensslv.h | grep "LibreSSL" >/dev/null; then
@ -16917,6 +16952,7 @@ _ACEOF
fi
# Check whether --enable-sha2 was given.
if test "${enable_sha2+set}" = set; then :
enableval=$enable_sha2;
@ -16940,7 +16976,7 @@ if test "${enable_gost+set}" = set; then :
fi
use_gost="no"
if test $USE_NSS = "no"; then
if test $USE_NSS = "no" -a $USE_NETTLE = "no"; then
case "$enable_gost" in
no)
;;
@ -17093,7 +17129,7 @@ case "$enable_ecdsa" in
no)
;;
*)
if test $USE_NSS = "no"; then
if test $USE_NSS = "no" -a $USE_NETTLE = "no"; then
ac_fn_c_check_func "$LINENO" "ECDSA_sign" "ac_cv_func_ECDSA_sign"
if test "x$ac_cv_func_ECDSA_sign" = xyes; then :

View file

@ -563,13 +563,34 @@ AC_ARG_WITH([nss], AC_HELP_STRING([--with-nss=path],
CPPFLAGS="-I/usr/include/nspr4 $CPPFLAGS"
fi
LIBS="$LIBS -lnss3 -lnspr4"
SSLLIB=""
]
)
# libnettle
USE_NETTLE="no"
AC_ARG_WITH([nettle], AC_HELP_STRING([--with-nettle=path],
[use libnettle as crypto library, installed at path.]),
[
USE_NETTLE="yes"
AC_DEFINE(HAVE_NETTLE, 1, [Use libnettle for crypto])
if test "$withval" != "" -a "$withval" != "yes"; then
CPPFLAGS="$CPPFLAGS -I$withval/include/nettle"
LDFLAGS="$LDFLAGS -L$withval/lib"
ACX_RUNTIME_PATH_ADD([$withval/lib])
else
CPPFLAGS="$CPPFLAGS -I/usr/include/nettle"
fi
LIBS="$LIBS -lhogweed -lnettle -lgmp"
SSLLIB=""
]
)
# openssl
if test $USE_NSS = "no"; then
if test $USE_NSS = "no" -a $USE_NETTLE = "no"; then
ACX_WITH_SSL
ACX_LIB_SSL
SSLLIB="-lssl"
AC_MSG_CHECKING([for LibreSSL])
if grep VERSION_TEXT $ssldir/include/openssl/opensslv.h | grep "LibreSSL" >/dev/null; then
AC_MSG_RESULT([yes])
@ -604,6 +625,7 @@ AC_INCLUDES_DEFAULT
#include <openssl/evp.h>
])
fi
AC_SUBST(SSLLIB)
AC_ARG_ENABLE(sha2, AC_HELP_STRING([--disable-sha2], [Disable SHA256 and SHA512 RRSIG support]))
@ -715,7 +737,7 @@ AC_MSG_RESULT($ac_cv_c_gost_works)
AC_ARG_ENABLE(gost, AC_HELP_STRING([--disable-gost], [Disable GOST support]))
use_gost="no"
if test $USE_NSS = "no"; then
if test $USE_NSS = "no" -a $USE_NETTLE = "no"; then
case "$enable_gost" in
no)
;;
@ -729,7 +751,7 @@ case "$enable_gost" in
fi
;;
esac
fi dnl !USE_NSS
fi dnl !USE_NSS && !USE_NETTLE
AC_ARG_ENABLE(ecdsa, AC_HELP_STRING([--disable-ecdsa], [Disable ECDSA support]))
use_ecdsa="no"
@ -737,7 +759,7 @@ case "$enable_ecdsa" in
no)
;;
*)
if test $USE_NSS = "no"; then
if test $USE_NSS = "no" -a $USE_NETTLE = "no"; then
AC_CHECK_FUNC(ECDSA_sign, [], [AC_MSG_ERROR([OpenSSL does not support ECDSA: please upgrade or rerun with --disable-ecdsa])])
AC_CHECK_FUNC(SHA384_Init, [], [AC_MSG_ERROR([OpenSSL does not support SHA384: please upgrade or rerun with --disable-ecdsa])])
AC_CHECK_DECLS([NID_X9_62_prime256v1, NID_secp384r1], [], [AC_MSG_ERROR([OpenSSL does not support the ECDSA curves: please upgrade or rerun with --disable-ecdsa])], [AC_INCLUDES_DEFAULT

View file

@ -1,3 +1,8 @@
17 November 2015: Wouter
- Fix #594. libunbound: optionally use libnettle for crypto.
Contributed by Luca Bruno. Added --with-nettle for use with
--with-libunbound-only.
16 November 2015: Wouter
- Fix for lenient accept of reverse order DNAME and CNAME.

View file

@ -286,7 +286,7 @@ main(int argc, char* argv[])
testbound_selftest();
exit(0);
case '2':
#if (defined(HAVE_EVP_SHA256) || defined(HAVE_NSS)) && defined(USE_SHA2)
#if (defined(HAVE_EVP_SHA256) || defined(HAVE_NSS) || defined(HAVE_NETTLE)) && defined(USE_SHA2)
printf("SHA256 supported\n");
exit(0);
#else

View file

@ -191,7 +191,8 @@ verifytest_rrset(struct module_env* env, struct val_env* ve,
printf("verify outcome is: %s %s\n", sec_status_to_string(sec),
reason?reason:"");
}
if(should_be_bogus(rrset, qinfo)) {
if(should_be_bogus(rrset, qinfo) ||
(reason && strncmp(reason, "(custom)", 8) == 0)) {
unit_assert(sec == sec_status_bogus);
} else {
unit_assert(sec == sec_status_secure);
@ -504,12 +505,12 @@ verify_test(void)
verifytest_file("testdata/test_signatures.6", "20080416005004");
verifytest_file("testdata/test_signatures.7", "20070829144150");
verifytest_file("testdata/test_signatures.8", "20070829144150");
#if (defined(HAVE_EVP_SHA256) || defined(HAVE_NSS)) && defined(USE_SHA2)
#if (defined(HAVE_EVP_SHA256) || defined(HAVE_NSS) || defined(HAVE_NETTLE)) && defined(USE_SHA2)
verifytest_file("testdata/test_sigs.rsasha256", "20070829144150");
verifytest_file("testdata/test_sigs.sha1_and_256", "20070829144150");
verifytest_file("testdata/test_sigs.rsasha256_draft", "20090101000000");
#endif
#if (defined(HAVE_EVP_SHA512) || defined(HAVE_NSS)) && defined(USE_SHA2)
#if (defined(HAVE_EVP_SHA512) || defined(HAVE_NSS) || defined(HAVE_NETTLE)) && defined(USE_SHA2)
verifytest_file("testdata/test_sigs.rsasha512_draft", "20070829144150");
#endif
verifytest_file("testdata/test_sigs.hinfo", "20090107100022");

View file

@ -68,6 +68,8 @@
/* nss3 */
#include "secport.h"
#include "pk11pub.h"
#elif defined(HAVE_NETTLE)
#include "yarrow.h"
#endif
/**
@ -76,7 +78,7 @@
*/
#define MAX_VALUE 0x7fffffff
#ifndef HAVE_NSS
#if defined(HAVE_SSL)
void
ub_systemseed(unsigned int ATTR_UNUSED(seed))
{
@ -110,7 +112,7 @@ ub_random_max(struct ub_randstate* state, long int x)
return (long)arc4random_uniform((uint32_t)x);
}
#else
#elif defined(HAVE_NSS)
/* not much to remember for NSS since we use its pk11_random, placeholder */
struct ub_randstate {
@ -144,6 +146,72 @@ long int ub_random(struct ub_randstate* ATTR_UNUSED(state))
return x & MAX_VALUE;
}
#elif defined(HAVE_NETTLE)
/**
* libnettle implements a Yarrow-256 generator (SHA256 + AES),
* and we have to ensure it is seeded before use.
*/
struct ub_randstate {
struct yarrow256_ctx ctx;
int seeded;
};
void ub_systemseed(unsigned int ATTR_UNUSED(seed))
{
/**
* We seed on init and not here, as we need the ctx to re-seed.
* This also means that re-seeding is not supported.
*/
log_err("Re-seeding not supported, generator untouched");
}
struct ub_randstate* ub_initstate(unsigned int seed,
struct ub_randstate* ATTR_UNUSED(from))
{
struct ub_randstate* s = (struct ub_randstate*)calloc(1, sizeof(*s));
uint8_t buf[YARROW256_SEED_FILE_SIZE];
if(!s) {
log_err("malloc failure in random init");
return NULL;
}
/* Setup Yarrow context */
yarrow256_init(&s->ctx, 0, NULL);
if(getentropy(buf, sizeof(buf)) != -1) {
/* got entropy */
yarrow256_seed(&s->ctx, YARROW256_SEED_FILE_SIZE, buf);
s->seeded = yarrow256_is_seeded(&s->ctx);
} else {
/* Stretch the uint32 input seed and feed it to Yarrow */
uint32_t v = seed;
size_t i;
for(i=0; i < (YARROW256_SEED_FILE_SIZE/sizeof(seed)); i++) {
memmove(buf+i*sizeof(seed), &v, sizeof(seed));
v = v*seed + (uint32_t)i;
}
yarrow256_seed(&s->ctx, YARROW256_SEED_FILE_SIZE, buf);
s->seeded = yarrow256_is_seeded(&s->ctx);
}
return s;
}
long int ub_random(struct ub_randstate* s)
{
/* random 31 bit value. */
long int x = 0;
if (!s || !s->seeded) {
log_err("Couldn't generate randomness, Yarrow-256 generator not yet seeded");
} else {
yarrow256_random(&s->ctx, sizeof(x), (uint8_t *)&x);
}
return x & MAX_VALUE;
}
#endif /* HAVE_SSL or HAVE_NSS or HAVE_NETTLE */
#if defined(HAVE_NSS) || defined(HAVE_NETTLE)
long int
ub_random_max(struct ub_randstate* state, long int x)
{
@ -155,7 +223,7 @@ ub_random_max(struct ub_randstate* state, long int x)
v = ub_random(state);
return (v % x);
}
#endif /* HAVE_NSS */
#endif /* HAVE_NSS or HAVE_NETTLE */
void
ub_randfree(struct ub_randstate* s)

View file

@ -48,6 +48,8 @@
#ifdef HAVE_NSS
/* nss3 */
#include "sechash.h"
#elif defined(HAVE_NETTLE)
#include "sha1.h"
#endif
#include "validator/val_nsec3.h"
#include "validator/validator.h"
@ -546,43 +548,70 @@ nsec3_get_hashed(sldns_buffer* buf, uint8_t* nm, size_t nmlen, int algo,
sldns_buffer_write(buf, salt, saltlen);
sldns_buffer_flip(buf);
switch(algo) {
#if defined(HAVE_EVP_SHA1) || defined(HAVE_NSS)
#if defined(HAVE_EVP_SHA1)
case NSEC3_HASH_SHA1:
#ifdef HAVE_SSL
hash_len = SHA_DIGEST_LENGTH;
#else
hash_len = SHA1_LENGTH;
#endif
if(hash_len > max)
return 0;
# ifdef HAVE_SSL
(void)SHA1((unsigned char*)sldns_buffer_begin(buf),
(unsigned long)sldns_buffer_limit(buf),
(unsigned char*)res);
# else
(void)HASH_HashBuf(HASH_AlgSHA1, (unsigned char*)res,
(unsigned char*)sldns_buffer_begin(buf),
(unsigned long)sldns_buffer_limit(buf));
# endif
for(i=0; i<iter; i++) {
sldns_buffer_clear(buf);
sldns_buffer_write(buf, res, hash_len);
sldns_buffer_write(buf, salt, saltlen);
sldns_buffer_flip(buf);
# ifdef HAVE_SSL
(void)SHA1(
(unsigned char*)sldns_buffer_begin(buf),
(unsigned long)sldns_buffer_limit(buf),
(unsigned char*)res);
# else
}
break;
#elif defined(HAVE_NSS)
case NSEC3_HASH_SHA1:
hash_len = SHA1_LENGTH;
if(hash_len > max)
return 0;
(void)HASH_HashBuf(HASH_AlgSHA1, (unsigned char*)res,
(unsigned char*)sldns_buffer_begin(buf),
(unsigned long)sldns_buffer_limit(buf));
for(i=0; i<iter; i++) {
sldns_buffer_clear(buf);
sldns_buffer_write(buf, res, hash_len);
sldns_buffer_write(buf, salt, saltlen);
sldns_buffer_flip(buf);
(void)HASH_HashBuf(HASH_AlgSHA1,
(unsigned char*)res,
(unsigned char*)sldns_buffer_begin(buf),
(unsigned long)sldns_buffer_limit(buf));
# endif
}
break;
#endif /* HAVE_EVP_SHA1 or NSS */
#elif defined(HAVE_NETTLE)
case NSEC3_HASH_SHA1:
{
struct sha1_ctx ctx;
hash_len = SHA1_DIGEST_SIZE;
if(hash_len > max)
return 0;
sha1_init(&ctx);
sha1_update(&ctx,
(size_t)sldns_buffer_limit(buf),
(const uint8_t*)sldns_buffer_begin(buf));
sha1_digest(&ctx, SHA1_DIGEST_SIZE, (uint8_t *)res);
for(i=0; i<iter; i++) {
sldns_buffer_clear(buf);
sldns_buffer_write(buf, res, hash_len);
sldns_buffer_write(buf, salt, saltlen);
sldns_buffer_flip(buf);
sha1_init(&ctx);
sha1_update(&ctx,
(size_t)sldns_buffer_limit(buf),
(const uint8_t*)sldns_buffer_begin(buf));
sha1_digest(&ctx, SHA1_DIGEST_SIZE, (uint8_t *)res);
}
break;
}
#endif /* HAVE_EVP_SHA1 or HAVE_NSS or HAVE_NETTLE*/
default:
log_err("nsec3 hash of unknown algo %d", algo);
return 0;
@ -608,46 +637,77 @@ nsec3_calc_hash(struct regional* region, sldns_buffer* buf,
sldns_buffer_write(buf, salt, saltlen);
sldns_buffer_flip(buf);
switch(algo) {
#if defined(HAVE_EVP_SHA1) || defined(HAVE_NSS)
case NSEC3_HASH_SHA1:
#ifdef HAVE_SSL
case NSEC3_HASH_SHA1:
c->hash_len = SHA_DIGEST_LENGTH;
#else
c->hash_len = SHA1_LENGTH;
#endif
c->hash = (uint8_t*)regional_alloc(region,
c->hash_len);
if(!c->hash)
return 0;
# ifdef HAVE_SSL
(void)SHA1((unsigned char*)sldns_buffer_begin(buf),
(unsigned long)sldns_buffer_limit(buf),
(unsigned char*)c->hash);
# else
(void)HASH_HashBuf(HASH_AlgSHA1,
(unsigned char*)c->hash,
(unsigned char*)sldns_buffer_begin(buf),
(unsigned long)sldns_buffer_limit(buf));
# endif
for(i=0; i<iter; i++) {
sldns_buffer_clear(buf);
sldns_buffer_write(buf, c->hash, c->hash_len);
sldns_buffer_write(buf, salt, saltlen);
sldns_buffer_flip(buf);
# ifdef HAVE_SSL
(void)SHA1(
(unsigned char*)sldns_buffer_begin(buf),
(unsigned long)sldns_buffer_limit(buf),
(unsigned char*)c->hash);
# else
}
break;
#elif defined(HAVE_NSS)
case NSEC3_HASH_SHA1:
c->hash_len = SHA1_LENGTH;
c->hash = (uint8_t*)regional_alloc(region,
c->hash_len);
if(!c->hash)
return 0;
(void)HASH_HashBuf(HASH_AlgSHA1,
(unsigned char*)c->hash,
(unsigned char*)sldns_buffer_begin(buf),
(unsigned long)sldns_buffer_limit(buf));
for(i=0; i<iter; i++) {
sldns_buffer_clear(buf);
sldns_buffer_write(buf, c->hash, c->hash_len);
sldns_buffer_write(buf, salt, saltlen);
sldns_buffer_flip(buf);
(void)HASH_HashBuf(HASH_AlgSHA1,
(unsigned char*)c->hash,
(unsigned char*)sldns_buffer_begin(buf),
(unsigned long)sldns_buffer_limit(buf));
# endif
}
break;
#endif /* HAVE_EVP_SHA1 or NSS */
#elif defined(HAVE_NETTLE)
case NSEC3_HASH_SHA1:
{
struct sha1_ctx ctx;
c->hash_len = SHA1_DIGEST_SIZE;
c->hash = (uint8_t*)regional_alloc(region,
c->hash_len);
if(!c->hash)
return 0;
sha1_init(&ctx);
sha1_update(&ctx,
(size_t)sldns_buffer_limit(buf),
(const uint8_t*)sldns_buffer_begin(buf));
sha1_digest(&ctx, SHA1_DIGEST_SIZE, (uint8_t *)c->hash);
for(i=0; i<iter; i++) {
sldns_buffer_clear(buf);
sldns_buffer_write(buf, c->hash, c->hash_len);
sldns_buffer_write(buf, salt, saltlen);
sldns_buffer_flip(buf);
sha1_init(&ctx);
sha1_update(&ctx,
(size_t)sldns_buffer_limit(buf),
(const uint8_t*)sldns_buffer_begin(buf));
sha1_digest(&ctx, SHA1_DIGEST_SIZE, (uint8_t *)c->hash);
}
break;
}
#endif /* HAVE_SSL or HAVE_NSS or HAVE_NETTLE */
default:
log_err("nsec3 hash of unknown algo %d", algo);
return -1;

View file

@ -49,7 +49,7 @@
#include "sldns/keyraw.h"
#include "sldns/sbuffer.h"
#if !defined(HAVE_SSL) && !defined(HAVE_NSS)
#if !defined(HAVE_SSL) && !defined(HAVE_NSS) && !defined(HAVE_NETTLE)
#error "Need crypto library to do digital signature cryptography"
#endif
@ -1069,5 +1069,425 @@ verify_canonrrset(sldns_buffer* buf, int algo, unsigned char* sigblock,
return sec_status_bogus;
}
#elif defined(HAVE_NETTLE)
#endif /* HAVE_SSL or HAVE_NSS */
#include "sha.h"
#include "bignum.h"
#include "macros.h"
#include "rsa.h"
#include "dsa.h"
#ifdef USE_ECDSA
#include "ecdsa.h"
#include "ecc-curve.h"
#endif
/**
* Return size of DS digest according to its hash algorithm.
* @param algo: DS digest algo.
* @return size in bytes of digest, or 0 if not supported.
*/
size_t
ds_digest_size_supported(int algo)
{
switch(algo) {
case LDNS_SHA1:
return SHA1_DIGEST_SIZE;
#ifdef USE_SHA2
case LDNS_SHA256:
return SHA256_DIGEST_SIZE;
#endif
#ifdef USE_ECDSA
case LDNS_SHA384:
return SHA384_DIGEST_SIZE;
#endif
/* GOST not supported */
case LDNS_HASH_GOST:
default:
break;
}
return 0;
}
static int
_digest_nettle(int algo, uint8_t* buf, size_t len,
unsigned char* res)
{
switch(algo) {
case SHA1_DIGEST_SIZE:
{
struct sha1_ctx ctx;
sha1_init(&ctx);
sha1_update(&ctx, len, buf);
sha1_digest(&ctx, SHA1_DIGEST_SIZE, res);
return 1;
}
case SHA256_DIGEST_SIZE:
{
struct sha256_ctx ctx;
sha256_init(&ctx);
sha256_update(&ctx, len, buf);
sha256_digest(&ctx, SHA256_DIGEST_SIZE, res);
return 1;
}
case SHA384_DIGEST_SIZE:
{
struct sha384_ctx ctx;
sha384_init(&ctx);
sha384_update(&ctx, len, buf);
sha384_digest(&ctx, SHA384_DIGEST_SIZE, res);
return 1;
}
case SHA512_DIGEST_SIZE:
{
struct sha512_ctx ctx;
sha512_init(&ctx);
sha512_update(&ctx, len, buf);
sha512_digest(&ctx, SHA512_DIGEST_SIZE, res);
return 1;
}
default:
break;
}
return 0;
}
int
secalgo_ds_digest(int algo, unsigned char* buf, size_t len,
unsigned char* res)
{
switch(algo) {
case LDNS_SHA1:
return _digest_nettle(SHA1_DIGEST_SIZE, buf, len, res);
#if defined(USE_SHA2)
case LDNS_SHA256:
return _digest_nettle(SHA256_DIGEST_SIZE, buf, len, res);
#endif
#ifdef USE_ECDSA
case LDNS_SHA384:
return _digest_nettle(SHA384_DIGEST_SIZE, buf, len, res);
#endif
case LDNS_HASH_GOST:
default:
verbose(VERB_QUERY, "unknown DS digest algorithm %d",
algo);
break;
}
return 0;
}
int
dnskey_algo_id_is_supported(int id)
{
/* uses libnettle */
switch(id) {
case LDNS_DSA:
case LDNS_DSA_NSEC3:
case LDNS_RSASHA1:
case LDNS_RSASHA1_NSEC3:
#ifdef USE_SHA2
case LDNS_RSASHA256:
case LDNS_RSASHA512:
#endif
#ifdef USE_ECDSA
case LDNS_ECDSAP256SHA256:
case LDNS_ECDSAP384SHA384:
#endif
return 1;
case LDNS_RSAMD5: /* RFC 6725 deprecates RSAMD5 */
case LDNS_ECC_GOST:
default:
return 0;
}
}
static char *
_verify_nettle_dsa(sldns_buffer* buf, unsigned char* sigblock,
unsigned int sigblock_len, unsigned char* key, unsigned int keylen)
{
uint8_t digest[SHA1_DIGEST_SIZE];
uint8_t key_t;
int res = 0;
size_t offset;
struct dsa_public_key pubkey;
struct dsa_signature signature;
unsigned int expected_len;
// Validate T values constraints - RFC 2536 sec. 2 & sec. 3
key_t = key[0];
if (key_t != sigblock[0] || key_t > 8 ) {
return "invalid T value in DSA signature or pubkey";
}
// Signature length: 41 bytes - RFC 2536 sec. 3
if (sigblock_len != 41) {
return "invalid DSA signature length";
}
// Pubkey minimum length: 21 bytes - RFC 2536 sec. 2
if (keylen < 21) {
return "DSA pubkey too short";
}
expected_len = 1 + // T
20 + // Q
(64 + key_t*8) + // P
(64 + key_t*8) + // G
(64 + key_t*8); // Y
if (keylen != expected_len ) {
return "invalid DSA pubkey length";
}
// Extract DSA pubkey from the record
nettle_dsa_public_key_init(&pubkey);
offset = 1;
nettle_mpz_set_str_256_u(pubkey.q, 20, key+offset);
offset += 20;
nettle_mpz_set_str_256_u(pubkey.p, (64 + key_t*8), key+offset);
offset += (64 + key_t*8);
nettle_mpz_set_str_256_u(pubkey.g, (64 + key_t*8), key+offset);
offset += (64 + key_t*8);
nettle_mpz_set_str_256_u(pubkey.y, (64 + key_t*8), key+offset);
// Extract DSA signature from the record
nettle_dsa_signature_init(&signature);
nettle_mpz_set_str_256_u(signature.r, 20, sigblock+1);
nettle_mpz_set_str_256_u(signature.s, 20, sigblock+1+20);
// Digest content of "buf" and verify its DSA signature in "sigblock"
res = _digest_nettle(SHA1_DIGEST_SIZE, (unsigned char*)sldns_buffer_begin(buf),
(unsigned int)sldns_buffer_limit(buf), digest);
res &= dsa_sha1_verify_digest(&pubkey, digest, &signature);
// Clear and return
nettle_dsa_signature_clear(&signature);
nettle_dsa_public_key_clear(&pubkey);
if (!res)
return "DSA signature verification failed";
else
return NULL;
}
static char *
_verify_nettle_rsa(sldns_buffer* buf, unsigned int digest_size, char* sigblock,
unsigned int sigblock_len, uint8_t* key, unsigned int keylen)
{
uint16_t exp_len = 0;
size_t exp_offset = 0, mod_offset = 0;
struct rsa_public_key pubkey;
mpz_t signature;
int res = 0;
// RSA pubkey parsing as per RFC 3110 sec. 2
if( keylen <= 1) {
return "null RSA key";
}
if (key[0] != 0) {
// 1-byte length
exp_len = key[0];
exp_offset = 1;
} else {
// 1-byte NUL + 2-bytes exponent length
if (keylen < 3) {
return "incorrect RSA key length";
}
exp_len = READ_UINT16(key+1);
if (exp_len == 0)
return "null RSA exponent length";
exp_offset = 3;
}
// Check that we are not over-running input length
if (keylen < exp_offset + exp_len + 1) {
return "RSA key content shorter than expected";
}
mod_offset = exp_offset + exp_len;
nettle_rsa_public_key_init(&pubkey);
pubkey.size = keylen - mod_offset;
nettle_mpz_set_str_256_u(pubkey.e, exp_len, &key[exp_offset]);
nettle_mpz_set_str_256_u(pubkey.n, pubkey.size, &key[mod_offset]);
// Digest content of "buf" and verify its RSA signature in "sigblock"
nettle_mpz_init_set_str_256_u(signature, sigblock_len, (uint8_t*)sigblock);
switch (digest_size) {
case SHA1_DIGEST_SIZE:
{
uint8_t digest[SHA1_DIGEST_SIZE];
res = _digest_nettle(SHA1_DIGEST_SIZE, (unsigned char*)sldns_buffer_begin(buf),
(unsigned int)sldns_buffer_limit(buf), digest);
res &= rsa_sha1_verify_digest(&pubkey, digest, signature);
break;
}
case SHA256_DIGEST_SIZE:
{
uint8_t digest[SHA256_DIGEST_SIZE];
res = _digest_nettle(SHA256_DIGEST_SIZE, (unsigned char*)sldns_buffer_begin(buf),
(unsigned int)sldns_buffer_limit(buf), digest);
res &= rsa_sha256_verify_digest(&pubkey, digest, signature);
break;
}
case SHA512_DIGEST_SIZE:
{
uint8_t digest[SHA512_DIGEST_SIZE];
res = _digest_nettle(SHA512_DIGEST_SIZE, (unsigned char*)sldns_buffer_begin(buf),
(unsigned int)sldns_buffer_limit(buf), digest);
res &= rsa_sha512_verify_digest(&pubkey, digest, signature);
break;
}
default:
break;
}
// Clear and return
nettle_rsa_public_key_clear(&pubkey);
mpz_clear(signature);
if (!res) {
return "RSA signature verification failed";
} else {
return NULL;
}
}
#ifdef USE_ECDSA
static char *
_verify_nettle_ecdsa(sldns_buffer* buf, unsigned int digest_size, unsigned char* sigblock,
unsigned int sigblock_len, unsigned char* key, unsigned int keylen)
{
int res = 0;
struct ecc_point pubkey;
struct dsa_signature signature;
// Always matched strength, as per RFC 6605 sec. 1
if (sigblock_len != 2*digest_size || keylen != 2*digest_size) {
return "wrong ECDSA signature length";
}
// Parse ECDSA signature as per RFC 6605 sec. 4
nettle_dsa_signature_init(&signature);
switch (digest_size) {
case SHA256_DIGEST_SIZE:
{
uint8_t digest[SHA256_DIGEST_SIZE];
mpz_t x, y;
nettle_ecc_point_init(&pubkey, &nettle_secp_256r1);
nettle_mpz_init_set_str_256_u(x, SHA256_DIGEST_SIZE, key);
nettle_mpz_init_set_str_256_u(y, SHA256_DIGEST_SIZE, key+SHA256_DIGEST_SIZE);
nettle_mpz_set_str_256_u(signature.r, SHA256_DIGEST_SIZE, sigblock);
nettle_mpz_set_str_256_u(signature.s, SHA256_DIGEST_SIZE, sigblock+SHA256_DIGEST_SIZE);
res = _digest_nettle(SHA256_DIGEST_SIZE, (unsigned char*)sldns_buffer_begin(buf),
(unsigned int)sldns_buffer_limit(buf), digest);
res &= nettle_ecc_point_set(&pubkey, x, y);
res &= nettle_ecdsa_verify (&pubkey, SHA256_DIGEST_SIZE, digest, &signature);
mpz_clear(x);
mpz_clear(y);
break;
}
case SHA384_DIGEST_SIZE:
{
uint8_t digest[SHA384_DIGEST_SIZE];
mpz_t x, y;
nettle_ecc_point_init(&pubkey, &nettle_secp_384r1);
nettle_mpz_init_set_str_256_u(x, SHA384_DIGEST_SIZE, key);
nettle_mpz_init_set_str_256_u(y, SHA384_DIGEST_SIZE, key+SHA384_DIGEST_SIZE);
nettle_mpz_set_str_256_u(signature.r, SHA384_DIGEST_SIZE, sigblock);
nettle_mpz_set_str_256_u(signature.s, SHA384_DIGEST_SIZE, sigblock+SHA384_DIGEST_SIZE);
res = _digest_nettle(SHA384_DIGEST_SIZE, (unsigned char*)sldns_buffer_begin(buf),
(unsigned int)sldns_buffer_limit(buf), digest);
res &= nettle_ecc_point_set(&pubkey, x, y);
res &= nettle_ecdsa_verify (&pubkey, SHA384_DIGEST_SIZE, digest, &signature);
mpz_clear(x);
mpz_clear(y);
nettle_ecc_point_clear(&pubkey);
break;
}
default:
return "unknown ECDSA algorithm";
}
// Clear and return
nettle_dsa_signature_clear(&signature);
if (!res)
return "ECDSA signature verification failed";
else
return NULL;
}
#endif
/**
* Check a canonical sig+rrset and signature against a dnskey
* @param buf: buffer with data to verify, the first rrsig part and the
* canonicalized rrset.
* @param algo: DNSKEY algorithm.
* @param sigblock: signature rdata field from RRSIG
* @param sigblock_len: length of sigblock data.
* @param key: public key data from DNSKEY RR.
* @param keylen: length of keydata.
* @param reason: bogus reason in more detail.
* @return secure if verification succeeded, bogus on crypto failure,
* unchecked on format errors and alloc failures.
*/
enum sec_status
verify_canonrrset(sldns_buffer* buf, int algo, unsigned char* sigblock,
unsigned int sigblock_len, unsigned char* key, unsigned int keylen,
char** reason)
{
unsigned int digest_size = 0;
if (sigblock_len == 0 || keylen == 0) {
*reason = "null signature";
return sec_status_bogus;
}
switch(algo) {
case LDNS_DSA:
case LDNS_DSA_NSEC3:
// Some of these signatures are non-standard
if (key[0] > 8 || sigblock_len != 41) {
*reason = "(custom) unknown DSA signature";
return sec_status_unchecked;
}
*reason = _verify_nettle_dsa(buf, sigblock, sigblock_len, key, keylen);
if (*reason != NULL)
return sec_status_bogus;
else
return sec_status_secure;
case LDNS_RSASHA1:
case LDNS_RSASHA1_NSEC3:
digest_size = (digest_size ? digest_size : SHA1_DIGEST_SIZE);
#ifdef USE_SHA2
case LDNS_RSASHA256:
digest_size = (digest_size ? digest_size : SHA256_DIGEST_SIZE);
case LDNS_RSASHA512:
digest_size = (digest_size ? digest_size : SHA512_DIGEST_SIZE);
#endif
*reason = _verify_nettle_rsa(buf, digest_size, (char*)sigblock,
sigblock_len, key, keylen);
if (*reason != NULL)
return sec_status_bogus;
else
return sec_status_secure;
#ifdef USE_ECDSA
case LDNS_ECDSAP256SHA256:
digest_size = (digest_size ? digest_size : SHA256_DIGEST_SIZE);
case LDNS_ECDSAP384SHA384:
digest_size = (digest_size ? digest_size : SHA384_DIGEST_SIZE);
*reason = _verify_nettle_ecdsa(buf, digest_size, sigblock,
sigblock_len, key, keylen);
if (*reason != NULL)
return sec_status_bogus;
else
return sec_status_secure;
#endif
case LDNS_RSAMD5:
case LDNS_ECC_GOST:
default:
*reason = "unable to verify signature, unknown algorithm";
return sec_status_bogus;
}
}
#endif /* HAVE_SSL or HAVE_NSS or HAVE_NETTLE */

View file

@ -57,7 +57,7 @@
#include "sldns/wire2str.h"
#include <ctype.h>
#if !defined(HAVE_SSL) && !defined(HAVE_NSS)
#if !defined(HAVE_SSL) && !defined(HAVE_NSS) && !defined(HAVE_NETTLE)
#error "Need crypto library to do digital signature cryptography"
#endif