unbound/util/data/msgreply.c

1180 lines
34 KiB
C
Raw Normal View History

/*
* util/data/msgreply.c - store message and reply data.
*
* Copyright (c) 2007, NLnet Labs. All rights reserved.
*
* This software is open source.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* Neither the name of the NLNET LABS nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/**
* \file
*
* This file contains a data structure to store a message and its reply.
*/
#include "config.h"
#include "util/data/msgreply.h"
#include "util/storage/lookup3.h"
#include "util/log.h"
#include "util/alloc.h"
#include "util/netevent.h"
#include "util/net_help.h"
#include "util/data/dname.h"
#include "util/region-allocator.h"
#include "util/data/msgparse.h"
/** return code that means the function ran out of memory. negative so it does
* not conflict with DNS rcodes. */
#define RETVAL_OUTMEM -2
/** return code that means the data did not fit (completely) in the packet */
#define RETVAL_TRUNC -4
/** return code that means all is peachy keen. Equal to DNS rcode NOERROR */
#define RETVAL_OK 0
/** allocate qinfo, return 0 on error. */
static int
parse_create_qinfo(ldns_buffer* pkt, struct msg_parse* msg,
struct query_info* qinf)
{
if(msg->qname) {
qinf->qname = (uint8_t*)malloc(msg->qname_len);
if(!qinf->qname) return 0;
dname_pkt_copy(pkt, qinf->qname, msg->qname);
} else qinf->qname = 0;
qinf->qnamesize = msg->qname_len;
qinf->qtype = msg->qtype;
qinf->qclass = msg->qclass;
qinf->has_cd = 0;
if(msg->flags & BIT_CD)
qinf->has_cd = 1;
return 1;
}
/** allocate replyinfo, return 0 on error. */
static int
parse_create_repinfo(struct msg_parse* msg, struct reply_info** rep)
{
/* rrset_count-1 because the first ref is part of the struct. */
*rep = (struct reply_info*)malloc(sizeof(struct reply_info) +
sizeof(struct rrset_ref) * (msg->rrset_count-1) +
sizeof(struct ub_packed_rrset_key*) * msg->rrset_count);
if(!*rep) return 0;
(*rep)->flags = msg->flags;
(*rep)->qdcount = msg->qdcount;
(*rep)->ttl = 0;
(*rep)->an_numrrsets = msg->an_rrsets;
(*rep)->ns_numrrsets = msg->ns_rrsets;
(*rep)->ar_numrrsets = msg->ar_rrsets;
(*rep)->rrset_count = msg->rrset_count;
/* array starts after the refs */
(*rep)->rrsets = (struct ub_packed_rrset_key**)
&((*rep)->ref[msg->rrset_count]);
/* zero the arrays to assist cleanup in case of malloc failure */
memset( (*rep)->rrsets, 0,
sizeof(struct ub_packed_rrset_key*) * msg->rrset_count);
memset( &(*rep)->ref[0], 0,
sizeof(struct rrset_ref) * msg->rrset_count);
return 1;
}
/** allocate (special) rrset keys, return 0 on error. */
static int
parse_alloc_rrset_keys(struct msg_parse* msg, struct reply_info* rep,
struct alloc_cache* alloc)
{
size_t i;
for(i=0; i<msg->rrset_count; i++) {
rep->rrsets[i] = alloc_special_obtain(alloc);
if(!rep->rrsets[i])
return 0;
rep->rrsets[i]->entry.data = NULL;
}
return 1;
}
/** do the rdata copy */
static int
rdata_copy(ldns_buffer* pkt, struct packed_rrset_data* data, uint8_t* to,
struct rr_parse* rr, uint32_t* rr_ttl, uint16_t type)
{
uint16_t pkt_len;
const ldns_rr_descriptor* desc;
ldns_buffer_set_position(pkt, (size_t)
(rr->ttl_data - ldns_buffer_begin(pkt)));
log_assert(ldns_buffer_remaining(pkt) >= 6 /* ttl + rdatalen */);
*rr_ttl = ldns_buffer_read_u32(pkt);
/* RFC 2181 Section 8. if msb of ttl is set treat as if zero. */
if(*rr_ttl & 0x80000000U)
*rr_ttl = 0;
if(*rr_ttl < data->ttl)
data->ttl = *rr_ttl;
/* insert decompressed size into rdata len stored in memory */
/* -2 because rdatalen bytes are not included. */
pkt_len = htons(rr->size - 2);
memmove(to, &pkt_len, sizeof(uint16_t));
to += 2;
/* read packet rdata len */
pkt_len = ldns_buffer_read_u16(pkt);
if(ldns_buffer_remaining(pkt) < pkt_len)
return 0;
log_assert((size_t)pkt_len+2 <= rr->size);
desc = ldns_rr_descript(type);
if(pkt_len > 0 && desc && desc->_dname_count > 0) {
int count = (int)desc->_dname_count;
int rdf = 0;
size_t len;
size_t oldpos;
/* decompress dnames. */
while(pkt_len > 0 && count) {
switch(desc->_wireformat[rdf]) {
case LDNS_RDF_TYPE_DNAME:
oldpos = ldns_buffer_position(pkt);
dname_pkt_copy(pkt, to,
ldns_buffer_current(pkt));
to += pkt_dname_len(pkt);
pkt_len -= ldns_buffer_position(pkt)-oldpos;
count--;
len = 0;
break;
case LDNS_RDF_TYPE_STR:
len = ldns_buffer_current(pkt)[0] + 1;
break;
default:
len = get_rdf_size(desc->_wireformat[rdf]);
break;
}
if(len) {
memmove(to, ldns_buffer_current(pkt), len);
to += len;
ldns_buffer_skip(pkt, (ssize_t)len);
log_assert(len <= pkt_len);
pkt_len -= len;
}
rdf++;
}
}
/* copy remaining rdata */
if(pkt_len > 0)
memmove(to, ldns_buffer_current(pkt), pkt_len);
return 1;
}
/** copy over the data into packed rrset */
static int
parse_rr_copy(ldns_buffer* pkt, struct rrset_parse* pset,
struct packed_rrset_data* data)
{
size_t i;
struct rr_parse* rr = pset->rr_first;
uint8_t* nextrdata;
size_t total = pset->rr_count + pset->rrsig_count;
data->ttl = MAX_TTL;
data->count = pset->rr_count;
data->rrsig_count = pset->rrsig_count;
data->trust = rrset_trust_none;
/* layout: struct - rr_len - rr_data - rr_ttl - rdata - rrsig */
data->rr_len = (size_t*)((uint8_t*)data +
sizeof(struct packed_rrset_data));
data->rr_data = (uint8_t**)&(data->rr_len[total]);
data->rr_ttl = (uint32_t*)&(data->rr_data[total]);
nextrdata = (uint8_t*)&(data->rr_ttl[total]);
for(i=0; i<data->count; i++) {
data->rr_len[i] = rr->size;
data->rr_data[i] = nextrdata;
nextrdata += rr->size;
if(!rdata_copy(pkt, data, data->rr_data[i], rr,
&data->rr_ttl[i], pset->type))
return 0;
rr = rr->next;
}
/* if rrsig, its rdata is at nextrdata */
rr = pset->rrsig_first;
for(i=data->count; i<total; i++) {
data->rr_len[i] = rr->size;
data->rr_data[i] = nextrdata;
nextrdata += rr->size;
if(!rdata_copy(pkt, data, data->rr_data[i], rr,
&data->rr_ttl[i], LDNS_RR_TYPE_RRSIG))
return 0;
rr = rr->next;
}
return 1;
}
/** create rrset return 0 or rcode */
static int
parse_create_rrset(ldns_buffer* pkt, struct rrset_parse* pset,
struct packed_rrset_data** data)
{
/* allocate */
*data = malloc(sizeof(struct packed_rrset_data) +
(pset->rr_count + pset->rrsig_count) *
(sizeof(size_t)+sizeof(uint8_t*)+sizeof(uint32_t)) +
pset->size);
if(!*data)
return LDNS_RCODE_SERVFAIL;
/* copy & decompress */
if(!parse_rr_copy(pkt, pset, *data))
return LDNS_RCODE_SERVFAIL;
return 0;
}
/** get trust value for rrset */
static enum rrset_trust
get_rrset_trust(struct reply_info* rep, size_t i)
{
uint16_t AA = rep->flags & BIT_AA;
/* TODO: need scrubber that knows what zone the server serves, so that
* it can check if AA bit is warranted.
* it can check if rrset_trust_nonauth_ans_AA should be used */
if(i < rep->an_numrrsets) {
/* answer section */
if(AA) return rrset_trust_ans_AA;
else return rrset_trust_ans_noAA;
} else if(i < rep->an_numrrsets+rep->ns_numrrsets) {
/* authority section */
if(AA) return rrset_trust_auth_AA;
else return rrset_trust_auth_noAA;
} else {
/* addit section */
if(AA) return rrset_trust_add_AA;
else return rrset_trust_add_noAA;
}
return rrset_trust_none;
}
/**
* Copy and decompress rrs
* @param pkt: the packet for compression pointer resolution.
* @param msg: the parsed message
* @param rep: reply info to put rrs into.
* @return 0 or rcode.
*/
static int
parse_copy_decompress(ldns_buffer* pkt, struct msg_parse* msg,
struct reply_info* rep)
{
int ret;
size_t i;
uint16_t t;
struct rrset_parse *pset = msg->rrset_first;
struct packed_rrset_data* data;
log_assert(rep);
rep->ttl = MAX_TTL;
if(rep->rrset_count == 0)
rep->ttl = NORR_TTL;
for(i=0; i<rep->rrset_count; i++) {
rep->rrsets[i]->rk.flags = pset->flags;
rep->rrsets[i]->rk.dname_len = pset->dname_len;
rep->rrsets[i]->rk.dname = (uint8_t*)malloc(
pset->dname_len + 4 /* size of type and class */ );
if(!rep->rrsets[i]->rk.dname)
return LDNS_RCODE_SERVFAIL;
/** copy & decompress dname */
dname_pkt_copy(pkt, rep->rrsets[i]->rk.dname, pset->dname);
/** copy over type and class */
t = htons(pset->type);
memmove(&rep->rrsets[i]->rk.dname[pset->dname_len],
&t, sizeof(uint16_t));
memmove(&rep->rrsets[i]->rk.dname[pset->dname_len+2],
&pset->rrset_class, sizeof(uint16_t));
/** read data part. */
if((ret=parse_create_rrset(pkt, pset, &data)) != 0)
return ret;
rep->rrsets[i]->entry.data = (void*)data;
rep->rrsets[i]->entry.key = (void*)rep->rrsets[i];
rep->rrsets[i]->entry.hash = pset->hash;
data->trust = get_rrset_trust(rep, i);
if(data->ttl < rep->ttl)
rep->ttl = data->ttl;
pset = pset->rrset_all_next;
}
return 0;
}
/** allocate and decompress message and rrsets, returns 0 or rcode. */
static int
parse_create_msg(ldns_buffer* pkt, struct msg_parse* msg,
struct alloc_cache* alloc, struct query_info* qinf,
struct reply_info** rep)
{
int ret;
log_assert(pkt && msg);
if(!parse_create_qinfo(pkt, msg, qinf))
return LDNS_RCODE_SERVFAIL;
if(!parse_create_repinfo(msg, rep))
return LDNS_RCODE_SERVFAIL;
if(!parse_alloc_rrset_keys(msg, *rep, alloc))
return LDNS_RCODE_SERVFAIL;
if((ret=parse_copy_decompress(pkt, msg, *rep)) != 0)
return ret;
return 0;
}
int reply_info_parse(ldns_buffer* pkt, struct alloc_cache* alloc,
struct query_info* qinf, struct reply_info** rep, struct region* region,
struct edns_data* edns)
{
/* use scratch pad region-allocator during parsing. */
struct msg_parse* msg;
int ret;
qinf->qname = NULL;
*rep = NULL;
if(!(msg = region_alloc(region, sizeof(*msg)))) {
return LDNS_RCODE_SERVFAIL;
}
memset(msg, 0, sizeof(*msg));
log_assert(ldns_buffer_position(pkt) == 0);
if((ret = parse_packet(pkt, msg, region)) != 0) {
return ret;
}
if((ret = parse_extract_edns(msg, edns)) != 0)
return ret;
/* parse OK, allocate return structures */
/* this also performs dname decompression */
if((ret = parse_create_msg(pkt, msg, alloc, qinf, rep)) != 0) {
query_info_clear(qinf);
reply_info_parsedelete(*rep, alloc);
*rep = NULL;
return ret;
}
return 0;
}
/** helper compare function to sort in lock order */
static int
reply_info_sortref_cmp(const void* a, const void* b)
{
if(a < b) return -1;
if(a > b) return 1;
return 0;
}
void
reply_info_sortref(struct reply_info* rep)
{
qsort(&rep->ref[0], rep->rrset_count, sizeof(struct rrset_ref),
reply_info_sortref_cmp);
}
void
reply_info_set_ttls(struct reply_info* rep, uint32_t timenow)
{
size_t i, j;
rep->ttl += timenow;
for(i=0; i<rep->rrset_count; i++) {
struct packed_rrset_data* data = (struct packed_rrset_data*)
rep->rrsets[i]->entry.data;
data->ttl += timenow;
for(j=0; j<data->count + data->rrsig_count; j++)
data->rr_ttl[j] += timenow;
}
}
void
reply_info_parsedelete(struct reply_info* rep, struct alloc_cache* alloc)
{
size_t i;
if(!rep)
return;
/* no need to lock, since not shared in hashtables. */
for(i=0; i<rep->rrset_count; i++) {
ub_packed_rrset_parsedelete(rep->rrsets[i], alloc);
}
free(rep);
}
int
query_info_parse(struct query_info* m, ldns_buffer* query)
{
uint8_t* q = ldns_buffer_begin(query);
/* minimum size: header + \0 + qtype + qclass */
if(ldns_buffer_limit(query) < LDNS_HEADER_SIZE + 5)
return 0;
log_assert(!LDNS_QR_WIRE(q));
log_assert(LDNS_OPCODE_WIRE(q) == LDNS_PACKET_QUERY);
log_assert(LDNS_QDCOUNT(q) == 1);
log_assert(ldns_buffer_position(query) == 0);
m->has_cd = LDNS_CD_WIRE(q)?1:0;
ldns_buffer_skip(query, LDNS_HEADER_SIZE);
m->qname = ldns_buffer_current(query);
if((m->qnamesize = query_dname_len(query)) == 0)
return 0; /* parse error */
if(ldns_buffer_remaining(query) < 4)
return 0; /* need qtype, qclass */
m->qtype = ldns_buffer_read_u16(query);
m->qclass = ldns_buffer_read_u16(query);
return 1;
}
int
query_info_allocqname(struct query_info* m)
{
uint8_t* q = m->qname;
if(!(m->qname = (uint8_t*)malloc(m->qnamesize))) {
log_err("query_info_allocqname: out of memory");
return 0; /* out of memory */
}
memcpy(m->qname, q, m->qnamesize);
return 1;
}
/** tiny subroutine for msgreply_compare */
#define COMPARE_IT(x, y) \
if( (x) < (y) ) return -1; \
else if( (x) > (y) ) return +1; \
log_assert( (x) == (y) );
int
query_info_compare(void* m1, void* m2)
{
struct query_info* msg1 = (struct query_info*)m1;
struct query_info* msg2 = (struct query_info*)m2;
int mc;
/* from most different to least different for speed */
COMPARE_IT(msg1->qtype, msg2->qtype);
if((mc = query_dname_compare(msg1->qname, msg2->qname)) != 0)
return mc;
log_assert(msg1->qnamesize == msg2->qnamesize);
COMPARE_IT(msg1->has_cd, msg2->has_cd);
COMPARE_IT(msg1->qclass, msg2->qclass);
return 0;
#undef COMPARE_IT
}
void
query_info_clear(struct query_info* m)
{
free(m->qname);
m->qname = NULL;
}
size_t
msgreply_sizefunc(void* k, void* d)
{
struct query_info* q = (struct query_info*)k;
struct reply_info* r = (struct reply_info*)d;
size_t s = sizeof(struct msgreply_entry) + sizeof(struct reply_info)
+ q->qnamesize;
s += (r->rrset_count-1) * sizeof(struct rrset_ref);
s += r->rrset_count * sizeof(struct ub_packed_rrset_key*);
return s;
}
void
query_entry_delete(void *k, void* ATTR_UNUSED(arg))
{
struct msgreply_entry* q = (struct msgreply_entry*)k;
lock_rw_destroy(&q->entry.lock);
query_info_clear(&q->key);
free(q);
}
void
reply_info_delete(void* d, void* ATTR_UNUSED(arg))
{
struct reply_info* r = (struct reply_info*)d;
free(r);
}
hashvalue_t
query_info_hash(struct query_info *q)
{
hashvalue_t h = 0xab;
h = hashlittle(&q->qtype, sizeof(q->qtype), h);
h = hashlittle(&q->qclass, sizeof(q->qclass), h);
h = hashlittle(&q->has_cd, sizeof(q->has_cd), h);
h = dname_query_hash(q->qname, h);
return h;
}
/**
* Data structure to help domain name compression in outgoing messages.
* A tree of dnames and their offsets in the packet is kept.
* It is kept sorted, not canonical, but by label at least, so that after
* a lookup of a name you know its closest match, and the parent from that
* closest match. These are possible compression targets.
*
* It is a binary tree, not a rbtree or balanced tree, as the effort
* of keeping it balanced probably outweighs usefulness (given typical
* DNS packet size).
*/
struct compress_tree_node {
/** left node in tree, all smaller to this */
struct compress_tree_node* left;
/** right node in tree, all larger than this */
struct compress_tree_node* right;
/** the parent node - not for tree, but zone parent. One less label */
struct compress_tree_node* parent;
/** the domain name for this node. Pointer to uncompressed memory. */
uint8_t* dname;
/** number of labels in domain name, kept to help compare func. */
int labs;
/** offset in packet that points to this dname */
size_t offset;
};
/**
* Find domain name in tree, returns exact and closest match.
* @param tree: root of tree.
* @param dname: pointer to uncompressed dname.
* @param labs: number of labels in domain name.
* @param match: closest or exact match.
* guaranteed to be smaller or equal to the sought dname.
* can be null if the tree is empty.
* @param matchlabels: number of labels that match with closest match.
* can be zero is there is no match.
* @return: 0 if no exact match.
*/
static int
compress_tree_search(struct compress_tree_node* tree, uint8_t* dname,
int labs, struct compress_tree_node** match, int* matchlabels)
{
int c, n, closen=0;
struct compress_tree_node* p = tree;
struct compress_tree_node* close = 0;
while(p) {
if((c = dname_lab_cmp(dname, labs, p->dname, p->labs, &n))
== 0) {
*matchlabels = n;
*match = p;
return 1;
}
if(c<0) p = p->left;
else {
closen = n;
close = p; /* p->dname is smaller than dname */
p = p->right;
}
}
*matchlabels = closen;
*match = close;
return 0;
}
/**
* Lookup a domain name in compression tree.
* @param tree: root of tree (not the node with '.').
* @param dname: pointer to uncompressed dname.
* @param labs: number of labels in domain name.
* @return: 0 if not found or compress treenode with best compression.
*/
static struct compress_tree_node*
compress_tree_lookup(struct compress_tree_node* tree, uint8_t* dname,
int labs)
{
struct compress_tree_node* p;
int m;
if(labs <= 1)
return 0; /* do not compress root node */
if(compress_tree_search(tree, dname, labs, &p, &m)) {
/* exact match */
return p;
}
/* return some ancestor of p that compresses well. */
if(m>1) {
/* www.example.com. (labs=4) matched foo.example.com.(labs=4)
* then matchcount = 3. need to go up. */
while(p && p->labs > m)
p = p->parent;
return p;
}
return 0;
}
/**
* Insert node into domain name compression tree.
* @param tree: root of tree (may be modified)
* @param dname: pointer to uncompressed dname (stored in tree).
* @param labs: number of labels in dname.
* @param offset: offset into packet for dname.
* @param region: how to allocate memory for new node.
* @return new node or 0 on malloc failure.
*/
static struct compress_tree_node*
compress_tree_insert(struct compress_tree_node** tree, uint8_t* dname,
int labs, size_t offset, region_type* region)
{
int c, m;
struct compress_tree_node* p, **prev;
struct compress_tree_node* n = (struct compress_tree_node*)
region_alloc(region, sizeof(struct compress_tree_node));
if(!n) return 0;
n->left = 0;
n->right = 0;
n->parent = 0;
n->dname = dname;
n->labs = labs;
n->offset = offset;
/* find spot to insert it into */
prev = tree;
p = *tree;
while(p) {
c = dname_lab_cmp(dname, labs, p->dname, p->labs, &m);
log_assert(c != 0); /* may not already be in tree */
if(c==0) return p; /* insert only once */
if(c<0) {
prev = &p->left;
p = p->left;
} else {
prev = &p->right;
p = p->right;
}
}
*prev = n;
return n;
}
/**
* Store domain name and ancestors into compression tree.
* @param tree: root of tree (may be modified)
* @param dname: pointer to uncompressed dname (stored in tree).
* @param labs: number of labels in dname.
* @param offset: offset into packet for dname.
* @param region: how to allocate memory for new node.
* @param closest: match from previous lookup, used to compress dname.
* may be NULL if no previous match.
* if the tree has an ancestor of dname already, this must be it.
* @return: 0 on memory error.
*/
static int
compress_tree_store(struct compress_tree_node** tree, uint8_t* dname,
int labs, size_t offset, region_type* region,
struct compress_tree_node* closest)
{
uint8_t lablen;
struct compress_tree_node** lastparentptr = 0;
struct compress_tree_node* newnode;
int uplabs = labs-1; /* does not store root in tree */
if(closest) uplabs = labs - closest->labs;
log_assert(uplabs >= 0);
while(uplabs--) {
if(offset > PTR_MAX_OFFSET) {
if(lastparentptr)
*lastparentptr = closest;
return 1; /* compression pointer no longer useful */
}
/* store dname, labs, offset */
if(!(newnode = compress_tree_insert(tree, dname, labs, offset,
region))) {
if(lastparentptr)
*lastparentptr = closest;
return 0;
}
if(lastparentptr)
*lastparentptr = newnode;
lastparentptr = &newnode->parent;
/* next label */
lablen = *dname++;
dname += lablen;
offset += lablen+1;
labs--;
}
if(lastparentptr)
*lastparentptr = closest;
return 1;
}
/** compress a domain name */
static int
write_compressed_dname(ldns_buffer* pkt, uint8_t* dname, int labs,
struct compress_tree_node* p)
{
/* compress it */
int labcopy = labs - p->labs;
uint8_t lablen;
uint16_t ptr;
if(labs == 1) {
/* write root label */
if(ldns_buffer_remaining(pkt) < 1)
return 0;
ldns_buffer_write_u8(pkt, 0);
return 1;
}
/* copy the first couple of labels */
while(labcopy--) {
lablen = *dname++;
if(ldns_buffer_remaining(pkt) < (size_t)lablen+1)
return 0;
ldns_buffer_write_u8(pkt, lablen);
ldns_buffer_write(pkt, dname, lablen);
dname += lablen;
}
/* insert compression ptr */
if(ldns_buffer_remaining(pkt) < 2)
return 0;
ptr = PTR_CREATE(p->offset);
ldns_buffer_write_u16(pkt, ptr);
return 1;
}
/** compress owner name of RR, return RETVAL_OUTMEM RETVAL_TRUNC */
static int
compress_owner(struct ub_packed_rrset_key* key, ldns_buffer* pkt,
region_type* region, struct compress_tree_node** tree,
size_t owner_pos, uint16_t* owner_ptr, int owner_labs)
{
struct compress_tree_node* p;
if(!*owner_ptr) {
/* compress first time dname */
if((p = compress_tree_lookup(*tree, key->rk.dname,
owner_labs))) {
if(p->labs == owner_labs)
/* avoid ptr chains, since some software is
* not capable of decoding ptr after a ptr. */
*owner_ptr = htons(PTR_CREATE(p->offset));
if(!write_compressed_dname(pkt, key->rk.dname,
owner_labs, p))
return RETVAL_TRUNC;
/* check if typeclass+4 ttl + rdatalen is available */
if(ldns_buffer_remaining(pkt) < 4+4+2)
return RETVAL_TRUNC;
ldns_buffer_write(pkt, &key->rk.dname[
key->rk.dname_len], 4);
} else {
/* no compress */
if(ldns_buffer_remaining(pkt) < key->rk.dname_len+4+4+2)
return RETVAL_TRUNC;
ldns_buffer_write(pkt, key->rk.dname,
key->rk.dname_len+4);
if(owner_pos <= PTR_MAX_OFFSET)
*owner_ptr = htons(PTR_CREATE(owner_pos));
}
if(!compress_tree_store(tree, key->rk.dname,
owner_labs, owner_pos, region, p))
return RETVAL_OUTMEM;
} else {
/* always compress 2nd-further RRs in RRset */
if(owner_labs == 1) {
if(ldns_buffer_remaining(pkt) < 1+4+4+2)
return RETVAL_TRUNC;
ldns_buffer_write_u8(pkt, 0);
} else {
if(ldns_buffer_remaining(pkt) < 2+4+4+2)
return RETVAL_TRUNC;
ldns_buffer_write(pkt, owner_ptr, 2);
}
ldns_buffer_write(pkt, &key->rk.dname[key->rk.dname_len], 4);
}
return RETVAL_OK;
}
/** compress any domain name to the packet, return RETVAL_* */
static int
compress_any_dname(uint8_t* dname, ldns_buffer* pkt, int labs,
region_type* region, struct compress_tree_node** tree)
{
struct compress_tree_node* p;
size_t pos = ldns_buffer_position(pkt);
if((p = compress_tree_lookup(*tree, dname, labs))) {
if(!write_compressed_dname(pkt, dname, labs, p))
return RETVAL_TRUNC;
} else {
if(!dname_buffer_write(pkt, dname))
return RETVAL_TRUNC;
}
if(!compress_tree_store(tree, dname, labs, pos, region, p))
return RETVAL_OUTMEM;
return RETVAL_OK;
}
/** return true if type needs domain name compression in rdata */
static const ldns_rr_descriptor*
type_rdata_compressable(struct ub_packed_rrset_key* key)
{
uint16_t t;
memmove(&t, &key->rk.dname[key->rk.dname_len], sizeof(t));
t = ntohs(t);
if(ldns_rr_descript(t) &&
ldns_rr_descript(t)->_compress == LDNS_RR_COMPRESS)
return ldns_rr_descript(t);
return 0;
}
/** compress domain names in rdata, return RETVAL_* */
static int
compress_rdata(ldns_buffer* pkt, uint8_t* rdata, size_t todolen,
region_type* region, struct compress_tree_node** tree,
const ldns_rr_descriptor* desc)
{
int labs, r, rdf = 0;
size_t dname_len, len, pos = ldns_buffer_position(pkt);
uint8_t count = desc->_dname_count;
ldns_buffer_skip(pkt, 2); /* rdata len fill in later */
/* space for rdatalen checked for already */
rdata += 2;
todolen -= 2;
while(todolen > 0 && count) {
switch(desc->_wireformat[rdf]) {
case LDNS_RDF_TYPE_DNAME:
labs = dname_count_size_labels(rdata, &dname_len);
if((r=compress_any_dname(rdata, pkt, labs, region,
tree)) != RETVAL_OK)
return r;
rdata += dname_len;
todolen -= dname_len;
count--;
len = 0;
break;
case LDNS_RDF_TYPE_STR:
len = *rdata + 1;
break;
default:
len = get_rdf_size(desc->_wireformat[rdf]);
}
if(len) {
/* copy over */
if(ldns_buffer_remaining(pkt) < len)
return RETVAL_TRUNC;
ldns_buffer_write(pkt, rdata, len);
todolen -= len;
rdata += len;
}
rdf++;
}
/* copy remainder */
if(todolen > 0) {
if(ldns_buffer_remaining(pkt) < todolen)
return RETVAL_TRUNC;
ldns_buffer_write(pkt, rdata, todolen);
}
/* set rdata len */
ldns_buffer_write_u16_at(pkt, pos, ldns_buffer_position(pkt)-pos-2);
return RETVAL_OK;
}
/** store rrset in buffer in wireformat, return RETVAL_* */
static int
packed_rrset_encode(struct ub_packed_rrset_key* key, ldns_buffer* pkt,
uint16_t* num_rrs, uint32_t timenow, region_type* region,
int do_data, int do_sig, struct compress_tree_node** tree)
{
size_t i, owner_pos;
int r, owner_labs;
uint16_t owner_ptr = 0;
struct packed_rrset_data* data = (struct packed_rrset_data*)
key->entry.data;
owner_labs = dname_count_labels(key->rk.dname);
owner_pos = ldns_buffer_position(pkt);
if(do_data) {
const ldns_rr_descriptor* c = type_rdata_compressable(key);
for(i=0; i<data->count; i++) {
if((r=compress_owner(key, pkt, region, tree,
owner_pos, &owner_ptr, owner_labs))
!= RETVAL_OK)
return r;
ldns_buffer_write_u32(pkt, data->rr_ttl[i]-timenow);
if(c) {
if((r=compress_rdata(pkt, data->rr_data[i],
data->rr_len[i], region, tree, c))
!= RETVAL_OK)
return r;
} else {
if(ldns_buffer_remaining(pkt) < data->rr_len[i])
return RETVAL_TRUNC;
ldns_buffer_write(pkt, data->rr_data[i],
data->rr_len[i]);
}
}
}
/* insert rrsigs */
if(do_sig) {
size_t total = data->count+data->rrsig_count;
for(i=data->count; i<total; i++) {
if(owner_ptr && owner_labs != 1) {
if(ldns_buffer_remaining(pkt) <
2+4+4+data->rr_len[i])
return RETVAL_TRUNC;
ldns_buffer_write(pkt, &owner_ptr, 2);
} else {
if((r=compress_any_dname(key->rk.dname,
pkt, owner_labs, region, tree))
!= RETVAL_OK)
return r;
if(ldns_buffer_remaining(pkt) <
4+4+data->rr_len[i])
return RETVAL_TRUNC;
}
ldns_buffer_write_u16(pkt, LDNS_RR_TYPE_RRSIG);
ldns_buffer_write(pkt, &(key->rk.dname[
key->rk.dname_len+2]), sizeof(uint16_t));
ldns_buffer_write_u32(pkt, data->rr_ttl[i]-timenow);
/* rrsig rdata cannot be compressed, perform 100+ byte
* memcopy. */
ldns_buffer_write(pkt, data->rr_data[i],
data->rr_len[i]);
}
}
/* change rrnum only after we are sure it fits */
if(do_data)
*num_rrs += data->count;
if(do_sig)
*num_rrs += data->rrsig_count;
return RETVAL_OK;
}
/** store msg section in wireformat buffer, return RETVAL_* */
static int
insert_section(struct reply_info* rep, size_t num_rrsets, uint16_t* num_rrs,
ldns_buffer* pkt, size_t rrsets_before, uint32_t timenow,
region_type* region, int addit, struct compress_tree_node** tree)
{
int r;
size_t i, setstart;
*num_rrs = 0;
if(!addit) {
for(i=0; i<num_rrsets; i++) {
setstart = ldns_buffer_position(pkt);
if((r=packed_rrset_encode(rep->rrsets[rrsets_before+i],
pkt, num_rrs, timenow, region, 1, 1, tree))
!= RETVAL_OK) {
/* Bad, but if due to size must set TC bit */
/* trim off the rrset neatly. */
ldns_buffer_set_position(pkt, setstart);
return r;
}
}
} else {
for(i=0; i<num_rrsets; i++) {
setstart = ldns_buffer_position(pkt);
if((r=packed_rrset_encode(rep->rrsets[rrsets_before+i],
pkt, num_rrs, timenow, region, 1, 0, tree))
!= RETVAL_OK) {
ldns_buffer_set_position(pkt, setstart);
return r;
}
}
for(i=0; i<num_rrsets; i++) {
setstart = ldns_buffer_position(pkt);
if((r=packed_rrset_encode(rep->rrsets[rrsets_before+i],
pkt, num_rrs, timenow, region, 0, 1, tree))
!= RETVAL_OK) {
ldns_buffer_set_position(pkt, setstart);
return r;
}
}
}
return RETVAL_OK;
}
int reply_info_encode(struct query_info* qinfo, struct reply_info* rep,
uint16_t id, uint16_t flags, ldns_buffer* buffer, uint32_t timenow,
region_type* region, uint16_t udpsize)
{
uint16_t ancount=0, nscount=0, arcount=0;
struct compress_tree_node* tree = 0;
int r;
ldns_buffer_clear(buffer);
if(udpsize < ldns_buffer_limit(buffer))
ldns_buffer_set_limit(buffer, udpsize);
if(ldns_buffer_remaining(buffer) < LDNS_HEADER_SIZE)
return 0;
ldns_buffer_write(buffer, &id, sizeof(uint16_t));
ldns_buffer_write_u16(buffer, flags);
ldns_buffer_write_u16(buffer, rep->qdcount);
/* set an, ns, ar counts to zero in case of small packets */
ldns_buffer_write(buffer, "\000\000\000\000\000\000", 6);
/* insert query section */
if(rep->qdcount) {
if(ldns_buffer_remaining(buffer) <
qinfo->qnamesize+sizeof(uint16_t)*2)
return 0; /* buffer too small */
if(!compress_tree_store(&tree, qinfo->qname,
dname_count_labels(qinfo->qname),
ldns_buffer_position(buffer), region, NULL))
return 0;
ldns_buffer_write(buffer, qinfo->qname, qinfo->qnamesize);
ldns_buffer_write_u16(buffer, qinfo->qtype);
ldns_buffer_write_u16(buffer, qinfo->qclass);
}
/* insert answer section */
if((r=insert_section(rep, rep->an_numrrsets, &ancount, buffer,
0, timenow, region, 0, &tree)) != RETVAL_OK) {
if(r == RETVAL_TRUNC) {
/* create truncated message */
ldns_buffer_write_u16_at(buffer, 6, ancount);
LDNS_TC_SET(ldns_buffer_begin(buffer));
ldns_buffer_flip(buffer);
return 1;
}
return 0;
}
ldns_buffer_write_u16_at(buffer, 6, ancount);
/* insert auth section */
if((r=insert_section(rep, rep->ns_numrrsets, &nscount, buffer,
rep->an_numrrsets, timenow, region, 0, &tree)) != RETVAL_OK) {
if(r == RETVAL_TRUNC) {
/* create truncated message */
ldns_buffer_write_u16_at(buffer, 8, nscount);
LDNS_TC_SET(ldns_buffer_begin(buffer));
ldns_buffer_flip(buffer);
return 1;
}
return 0;
}
ldns_buffer_write_u16_at(buffer, 8, nscount);
/* insert add section */
if((r=insert_section(rep, rep->ar_numrrsets, &arcount, buffer,
rep->an_numrrsets + rep->ns_numrrsets, timenow, region,
1, &tree)) != RETVAL_OK) {
if(r == RETVAL_TRUNC) {
/* no need to set TC bit, this is the additional */
ldns_buffer_write_u16_at(buffer, 10, arcount);
ldns_buffer_flip(buffer);
return 1;
}
return 0;
}
ldns_buffer_write_u16_at(buffer, 10, arcount);
ldns_buffer_flip(buffer);
return 1;
}
uint16_t
calc_edns_field_size(struct edns_data* edns)
{
if(!edns || !edns->edns_present)
return 0;
/* domain root '.' + type + class + ttl + rdatalen(=0) */
return 1 + 2 + 2 + 4 + 2;
}
void
attach_edns_record(ldns_buffer* pkt, struct edns_data* edns)
{
size_t len;
if(!edns || !edns->edns_present)
return;
/* inc additional count */
ldns_buffer_write_u16_at(pkt, 10,
ldns_buffer_read_u16_at(pkt, 10) + 1);
len = ldns_buffer_limit(pkt);
ldns_buffer_clear(pkt);
ldns_buffer_set_position(pkt, len);
/* write EDNS record */
ldns_buffer_write_u8(pkt, 0); /* '.' label */
ldns_buffer_write_u16(pkt, LDNS_RR_TYPE_OPT); /* type */
ldns_buffer_write_u16(pkt, edns->udp_size); /* class */
ldns_buffer_write_u8(pkt, edns->ext_rcode); /* ttl */
ldns_buffer_write_u8(pkt, edns->edns_version);
ldns_buffer_write_u16(pkt, edns->bits);
ldns_buffer_write_u16(pkt, 0); /* rdatalen */
ldns_buffer_flip(pkt);
}
int
reply_info_answer_encode(struct query_info* qinf, struct reply_info* rep,
uint16_t id, uint16_t qflags, ldns_buffer* pkt, uint32_t timenow,
int cached, struct region* region, uint16_t udpsize,
struct edns_data* edns)
{
uint16_t flags;
if(!cached) {
/* original flags, copy RD bit from query. */
flags = rep->flags | (qflags & BIT_RD);
} else {
/* remove AA bit, copy RD and CD bits from query. */
flags = (rep->flags & ~BIT_AA) | (qflags & (BIT_RD|BIT_CD));
}
log_assert(flags & BIT_QR); /* QR bit must be on in our replies */
if(udpsize < LDNS_HEADER_SIZE + calc_edns_field_size(edns))
return 0; /* packet too small to contain edns... */
udpsize -= calc_edns_field_size(edns);
if(!reply_info_encode(qinf, rep, id, flags, pkt, timenow, region,
udpsize)) {
log_err("reply encode: out of memory");
return 0;
}
attach_edns_record(pkt, edns);
return 1;
}
struct msgreply_entry*
query_info_entrysetup(struct query_info* q, struct reply_info* r,
hashvalue_t h)
{
struct msgreply_entry* e = (struct msgreply_entry*)malloc(
sizeof(struct msgreply_entry));
if(!e) return NULL;
memcpy(&e->key, q, sizeof(*q));
e->entry.hash = h;
e->entry.key = e;
e->entry.data = r;
lock_rw_init(&e->entry.lock);
lock_protect(&e->entry.lock, &e->key, sizeof(e->key));
lock_protect(&e->entry.lock, &e->entry.hash, sizeof(e->entry.hash) +
sizeof(e->entry.key) + sizeof(e->entry.data));
lock_protect(&e->entry.lock, e->key.qname, e->key.qnamesize);
q->qname = NULL;
return e;
}
void
qinfo_query_encode(ldns_buffer* pkt, struct query_info* qinfo)
{
uint16_t flags = 0; /* QUERY, NOERROR */
if(qinfo->has_cd)
flags |= BIT_CD;
ldns_buffer_clear(pkt);
log_assert(ldns_buffer_remaining(pkt) >= 12+255+4/*max query*/);
ldns_buffer_skip(pkt, 2); /* id done later */
ldns_buffer_write_u16(pkt, flags);
ldns_buffer_write_u16(pkt, 1); /* query count */
ldns_buffer_write(pkt, "\000\000\000\000\000\000", 6); /* counts */
ldns_buffer_write(pkt, qinfo->qname, qinfo->qnamesize);
ldns_buffer_write_u16(pkt, qinfo->qtype);
ldns_buffer_write_u16(pkt, qinfo->qclass);
ldns_buffer_flip(pkt);
}