opnsense-src/sys/dev/netmap/netmap_kern.h
Luigi Rizzo 847bf38369 Sync netmap sources with the version in our private tree.
This commit contains large contributions from Giuseppe Lettieri and
Stefano Garzarella, is partly supported by grants from Verisign and Cisco,
and brings in the following:

- fix zerocopy monitor ports and introduce copying monitor ports
  (the latter are lower performance but give access to all traffic
  in parallel with the application)

- exclusive open mode, useful to implement solutions that recover
  from crashes of the main netmap client (suggested by Patrick Kelsey)

- revised memory allocator in preparation for the 'passthrough mode'
  (ptnetmap) recently presented at bsdcan. ptnetmap is described in
        S. Garzarella, G. Lettieri, L. Rizzo;
        Virtual device passthrough for high speed VM networking,
        ACM/IEEE ANCS 2015, Oakland (CA) May 2015
        http://info.iet.unipi.it/~luigi/research.html

- fix rx CRC handing on ixl

- add module dependencies for netmap when building drivers as modules

- minor simplifications to device-specific routines (*txsync, *rxsync)

- general code cleanup (remove unused variables, introduce macros
  to access rings and remove duplicate code,

Applications do not need to be recompiled, unless of course
they want to use the new features (monitors and exclusive open).

Those willing to try this code on stable/10 can just update the
sys/dev/netmap/*, sys/net/netmap* with the version in HEAD
and apply the small patches to individual device drivers.

MFC after:	1 month
Sponsored by:	(partly) Verisign, Cisco
2015-07-10 05:51:36 +00:00

1699 lines
52 KiB
C

/*
* Copyright (C) 2011-2014 Matteo Landi, Luigi Rizzo. All rights reserved.
* Copyright (C) 2013-2014 Universita` di Pisa. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* $FreeBSD$
*
* The header contains the definitions of constants and function
* prototypes used only in kernelspace.
*/
#ifndef _NET_NETMAP_KERN_H_
#define _NET_NETMAP_KERN_H_
#if defined(linux)
#if defined(CONFIG_NETMAP_VALE)
#define WITH_VALE
#endif
#if defined(CONFIG_NETMAP_PIPE)
#define WITH_PIPES
#endif
#if defined(CONFIG_NETMAP_MONITOR)
#define WITH_MONITOR
#endif
#if defined(CONFIG_NETMAP_GENERIC)
#define WITH_GENERIC
#endif
#if defined(CONFIG_NETMAP_V1000)
#define WITH_V1000
#endif
#else /* not linux */
#define WITH_VALE // comment out to disable VALE support
#define WITH_PIPES
#define WITH_MONITOR
#define WITH_GENERIC
#endif
#if defined(__FreeBSD__)
#define likely(x) __builtin_expect((long)!!(x), 1L)
#define unlikely(x) __builtin_expect((long)!!(x), 0L)
#define NM_LOCK_T struct mtx /* low level spinlock, used to protect queues */
#define NM_MTX_T struct sx /* OS-specific mutex (sleepable) */
#define NM_MTX_INIT(m) sx_init(&(m), #m)
#define NM_MTX_DESTROY(m) sx_destroy(&(m))
#define NM_MTX_LOCK(m) sx_xlock(&(m))
#define NM_MTX_UNLOCK(m) sx_xunlock(&(m))
#define NM_MTX_ASSERT(m) sx_assert(&(m), SA_XLOCKED)
#define NM_SELINFO_T struct nm_selinfo
#define MBUF_LEN(m) ((m)->m_pkthdr.len)
#define MBUF_IFP(m) ((m)->m_pkthdr.rcvif)
#define NM_SEND_UP(ifp, m) ((NA(ifp))->if_input)(ifp, m)
#define NM_ATOMIC_T volatile int // XXX ?
/* atomic operations */
#include <machine/atomic.h>
#define NM_ATOMIC_TEST_AND_SET(p) (!atomic_cmpset_acq_int((p), 0, 1))
#define NM_ATOMIC_CLEAR(p) atomic_store_rel_int((p), 0)
#if __FreeBSD_version >= 1100030
#define WNA(_ifp) (_ifp)->if_netmap
#else /* older FreeBSD */
#define WNA(_ifp) (_ifp)->if_pspare[0]
#endif /* older FreeBSD */
#if __FreeBSD_version >= 1100005
struct netmap_adapter *netmap_getna(if_t ifp);
#endif
#if __FreeBSD_version >= 1100027
#define GET_MBUF_REFCNT(m) ((m)->m_ext.ext_cnt ? *((m)->m_ext.ext_cnt) : -1)
#define SET_MBUF_REFCNT(m, x) *((m)->m_ext.ext_cnt) = x
#define PNT_MBUF_REFCNT(m) ((m)->m_ext.ext_cnt)
#else
#define GET_MBUF_REFCNT(m) ((m)->m_ext.ref_cnt ? *((m)->m_ext.ref_cnt) : -1)
#define SET_MBUF_REFCNT(m, x) *((m)->m_ext.ref_cnt) = x
#define PNT_MBUF_REFCNT(m) ((m)->m_ext.ref_cnt)
#endif
MALLOC_DECLARE(M_NETMAP);
struct nm_selinfo {
struct selinfo si;
struct mtx m;
};
void freebsd_selwakeup(struct nm_selinfo *si, int pri);
// XXX linux struct, not used in FreeBSD
struct net_device_ops {
};
struct ethtool_ops {
};
struct hrtimer {
};
#define NM_BNS_GET(b)
#define NM_BNS_PUT(b)
#elif defined (linux)
#define NM_LOCK_T safe_spinlock_t // see bsd_glue.h
#define NM_SELINFO_T wait_queue_head_t
#define MBUF_LEN(m) ((m)->len)
#define MBUF_IFP(m) ((m)->dev)
#define NM_SEND_UP(ifp, m) \
do { \
m->priority = NM_MAGIC_PRIORITY_RX; \
netif_rx(m); \
} while (0)
#define NM_ATOMIC_T volatile long unsigned int
#define NM_MTX_T struct mutex /* OS-specific sleepable lock */
#define NM_MTX_INIT(m) mutex_init(&(m))
#define NM_MTX_DESTROY(m) do { (void)(m); } while (0)
#define NM_MTX_LOCK(m) mutex_lock(&(m))
#define NM_MTX_UNLOCK(m) mutex_unlock(&(m))
#define NM_MTX_ASSERT(m) mutex_is_locked(&(m))
#ifndef DEV_NETMAP
#define DEV_NETMAP
#endif /* DEV_NETMAP */
#elif defined (__APPLE__)
#warning apple support is incomplete.
#define likely(x) __builtin_expect(!!(x), 1)
#define unlikely(x) __builtin_expect(!!(x), 0)
#define NM_LOCK_T IOLock *
#define NM_SELINFO_T struct selinfo
#define MBUF_LEN(m) ((m)->m_pkthdr.len)
#define NM_SEND_UP(ifp, m) ((ifp)->if_input)(ifp, m)
#else
#error unsupported platform
#endif /* end - platform-specific code */
#define NMG_LOCK_T NM_MTX_T
#define NMG_LOCK_INIT() NM_MTX_INIT(netmap_global_lock)
#define NMG_LOCK_DESTROY() NM_MTX_DESTROY(netmap_global_lock)
#define NMG_LOCK() NM_MTX_LOCK(netmap_global_lock)
#define NMG_UNLOCK() NM_MTX_UNLOCK(netmap_global_lock)
#define NMG_LOCK_ASSERT() NM_MTX_ASSERT(netmap_global_lock)
#define ND(format, ...)
#define D(format, ...) \
do { \
struct timeval __xxts; \
microtime(&__xxts); \
printf("%03d.%06d [%4d] %-25s " format "\n", \
(int)__xxts.tv_sec % 1000, (int)__xxts.tv_usec, \
__LINE__, __FUNCTION__, ##__VA_ARGS__); \
} while (0)
/* rate limited, lps indicates how many per second */
#define RD(lps, format, ...) \
do { \
static int t0, __cnt; \
if (t0 != time_second) { \
t0 = time_second; \
__cnt = 0; \
} \
if (__cnt++ < lps) \
D(format, ##__VA_ARGS__); \
} while (0)
struct netmap_adapter;
struct nm_bdg_fwd;
struct nm_bridge;
struct netmap_priv_d;
const char *nm_dump_buf(char *p, int len, int lim, char *dst);
#include "netmap_mbq.h"
extern NMG_LOCK_T netmap_global_lock;
enum txrx { NR_RX = 0, NR_TX = 1, NR_TXRX };
static __inline const char*
nm_txrx2str(enum txrx t)
{
return (t== NR_RX ? "RX" : "TX");
}
static __inline enum txrx
nm_txrx_swap(enum txrx t)
{
return (t== NR_RX ? NR_TX : NR_RX);
}
#define for_rx_tx(t) for ((t) = 0; (t) < NR_TXRX; (t)++)
/*
* private, kernel view of a ring. Keeps track of the status of
* a ring across system calls.
*
* nr_hwcur index of the next buffer to refill.
* It corresponds to ring->head
* at the time the system call returns.
*
* nr_hwtail index of the first buffer owned by the kernel.
* On RX, hwcur->hwtail are receive buffers
* not yet released. hwcur is advanced following
* ring->head, hwtail is advanced on incoming packets,
* and a wakeup is generated when hwtail passes ring->cur
* On TX, hwcur->rcur have been filled by the sender
* but not sent yet to the NIC; rcur->hwtail are available
* for new transmissions, and hwtail->hwcur-1 are pending
* transmissions not yet acknowledged.
*
* The indexes in the NIC and netmap rings are offset by nkr_hwofs slots.
* This is so that, on a reset, buffers owned by userspace are not
* modified by the kernel. In particular:
* RX rings: the next empty buffer (hwtail + hwofs) coincides with
* the next empty buffer as known by the hardware (next_to_check or so).
* TX rings: hwcur + hwofs coincides with next_to_send
*
* For received packets, slot->flags is set to nkr_slot_flags
* so we can provide a proper initial value (e.g. set NS_FORWARD
* when operating in 'transparent' mode).
*
* The following fields are used to implement lock-free copy of packets
* from input to output ports in VALE switch:
* nkr_hwlease buffer after the last one being copied.
* A writer in nm_bdg_flush reserves N buffers
* from nr_hwlease, advances it, then does the
* copy outside the lock.
* In RX rings (used for VALE ports),
* nkr_hwtail <= nkr_hwlease < nkr_hwcur+N-1
* In TX rings (used for NIC or host stack ports)
* nkr_hwcur <= nkr_hwlease < nkr_hwtail
* nkr_leases array of nkr_num_slots where writers can report
* completion of their block. NR_NOSLOT (~0) indicates
* that the writer has not finished yet
* nkr_lease_idx index of next free slot in nr_leases, to be assigned
*
* The kring is manipulated by txsync/rxsync and generic netmap function.
*
* Concurrent rxsync or txsync on the same ring are prevented through
* by nm_kr_(try)lock() which in turn uses nr_busy. This is all we need
* for NIC rings, and for TX rings attached to the host stack.
*
* RX rings attached to the host stack use an mbq (rx_queue) on both
* rxsync_from_host() and netmap_transmit(). The mbq is protected
* by its internal lock.
*
* RX rings attached to the VALE switch are accessed by both senders
* and receiver. They are protected through the q_lock on the RX ring.
*/
struct netmap_kring {
struct netmap_ring *ring;
uint32_t nr_hwcur;
uint32_t nr_hwtail;
/*
* Copies of values in user rings, so we do not need to look
* at the ring (which could be modified). These are set in the
* *sync_prologue()/finalize() routines.
*/
uint32_t rhead;
uint32_t rcur;
uint32_t rtail;
uint32_t nr_kflags; /* private driver flags */
#define NKR_PENDINTR 0x1 // Pending interrupt.
#define NKR_EXCLUSIVE 0x2 /* exclusive binding */
uint32_t nkr_num_slots;
/*
* On a NIC reset, the NIC ring indexes may be reset but the
* indexes in the netmap rings remain the same. nkr_hwofs
* keeps track of the offset between the two.
*/
int32_t nkr_hwofs;
uint16_t nkr_slot_flags; /* initial value for flags */
/* last_reclaim is opaque marker to help reduce the frequency
* of operations such as reclaiming tx buffers. A possible use
* is set it to ticks and do the reclaim only once per tick.
*/
uint64_t last_reclaim;
NM_SELINFO_T si; /* poll/select wait queue */
NM_LOCK_T q_lock; /* protects kring and ring. */
NM_ATOMIC_T nr_busy; /* prevent concurrent syscalls */
struct netmap_adapter *na;
/* The following fields are for VALE switch support */
struct nm_bdg_fwd *nkr_ft;
uint32_t *nkr_leases;
#define NR_NOSLOT ((uint32_t)~0) /* used in nkr_*lease* */
uint32_t nkr_hwlease;
uint32_t nkr_lease_idx;
/* while nkr_stopped is set, no new [tr]xsync operations can
* be started on this kring.
* This is used by netmap_disable_all_rings()
* to find a synchronization point where critical data
* structures pointed to by the kring can be added or removed
*/
volatile int nkr_stopped;
/* Support for adapters without native netmap support.
* On tx rings we preallocate an array of tx buffers
* (same size as the netmap ring), on rx rings we
* store incoming mbufs in a queue that is drained by
* a rxsync.
*/
struct mbuf **tx_pool;
// u_int nr_ntc; /* Emulation of a next-to-clean RX ring pointer. */
struct mbq rx_queue; /* intercepted rx mbufs. */
uint32_t users; /* existing bindings for this ring */
uint32_t ring_id; /* debugging */
enum txrx tx; /* kind of ring (tx or rx) */
char name[64]; /* diagnostic */
/* [tx]sync callback for this kring.
* The default nm_kring_create callback (netmap_krings_create)
* sets the nm_sync callback of each hardware tx(rx) kring to
* the corresponding nm_txsync(nm_rxsync) taken from the
* netmap_adapter; moreover, it sets the sync callback
* of the host tx(rx) ring to netmap_txsync_to_host
* (netmap_rxsync_from_host).
*
* Overrides: the above configuration is not changed by
* any of the nm_krings_create callbacks.
*/
int (*nm_sync)(struct netmap_kring *kring, int flags);
int (*nm_notify)(struct netmap_kring *kring, int flags);
#ifdef WITH_PIPES
struct netmap_kring *pipe; /* if this is a pipe ring,
* pointer to the other end
*/
struct netmap_ring *save_ring; /* pointer to hidden rings
* (see netmap_pipe.c for details)
*/
#endif /* WITH_PIPES */
#ifdef WITH_VALE
int (*save_notify)(struct netmap_kring *kring, int flags);
#endif
#ifdef WITH_MONITOR
/* array of krings that are monitoring this kring */
struct netmap_kring **monitors;
uint32_t max_monitors; /* current size of the monitors array */
uint32_t n_monitors; /* next unused entry in the monitor array */
/*
* Monitors work by intercepting the sync and notify callbacks of the
* monitored krings. This is implemented by replacing the pointers
* above and saving the previous ones in mon_* pointers below
*/
int (*mon_sync)(struct netmap_kring *kring, int flags);
int (*mon_notify)(struct netmap_kring *kring, int flags);
uint32_t mon_tail; /* last seen slot on rx */
uint32_t mon_pos; /* index of this ring in the monitored ring array */
#endif
} __attribute__((__aligned__(64)));
/* return the next index, with wraparound */
static inline uint32_t
nm_next(uint32_t i, uint32_t lim)
{
return unlikely (i == lim) ? 0 : i + 1;
}
/* return the previous index, with wraparound */
static inline uint32_t
nm_prev(uint32_t i, uint32_t lim)
{
return unlikely (i == 0) ? lim : i - 1;
}
/*
*
* Here is the layout for the Rx and Tx rings.
RxRING TxRING
+-----------------+ +-----------------+
| | | |
|XXX free slot XXX| |XXX free slot XXX|
+-----------------+ +-----------------+
head->| owned by user |<-hwcur | not sent to nic |<-hwcur
| | | yet |
+-----------------+ | |
cur->| available to | | |
| user, not read | +-----------------+
| yet | cur->| (being |
| | | prepared) |
| | | |
+-----------------+ + ------ +
tail->| |<-hwtail | |<-hwlease
| (being | ... | | ...
| prepared) | ... | | ...
+-----------------+ ... | | ...
| |<-hwlease +-----------------+
| | tail->| |<-hwtail
| | | |
| | | |
| | | |
+-----------------+ +-----------------+
* The cur/tail (user view) and hwcur/hwtail (kernel view)
* are used in the normal operation of the card.
*
* When a ring is the output of a switch port (Rx ring for
* a VALE port, Tx ring for the host stack or NIC), slots
* are reserved in blocks through 'hwlease' which points
* to the next unused slot.
* On an Rx ring, hwlease is always after hwtail,
* and completions cause hwtail to advance.
* On a Tx ring, hwlease is always between cur and hwtail,
* and completions cause cur to advance.
*
* nm_kr_space() returns the maximum number of slots that
* can be assigned.
* nm_kr_lease() reserves the required number of buffers,
* advances nkr_hwlease and also returns an entry in
* a circular array where completions should be reported.
*/
struct netmap_lut {
struct lut_entry *lut;
uint32_t objtotal; /* max buffer index */
uint32_t objsize; /* buffer size */
};
struct netmap_vp_adapter; // forward
/*
* The "struct netmap_adapter" extends the "struct adapter"
* (or equivalent) device descriptor.
* It contains all base fields needed to support netmap operation.
* There are in fact different types of netmap adapters
* (native, generic, VALE switch...) so a netmap_adapter is
* just the first field in the derived type.
*/
struct netmap_adapter {
/*
* On linux we do not have a good way to tell if an interface
* is netmap-capable. So we always use the following trick:
* NA(ifp) points here, and the first entry (which hopefully
* always exists and is at least 32 bits) contains a magic
* value which we can use to detect that the interface is good.
*/
uint32_t magic;
uint32_t na_flags; /* enabled, and other flags */
#define NAF_SKIP_INTR 1 /* use the regular interrupt handler.
* useful during initialization
*/
#define NAF_SW_ONLY 2 /* forward packets only to sw adapter */
#define NAF_BDG_MAYSLEEP 4 /* the bridge is allowed to sleep when
* forwarding packets coming from this
* interface
*/
#define NAF_MEM_OWNER 8 /* the adapter uses its own memory area
* that cannot be changed
*/
#define NAF_NATIVE 16 /* the adapter is native.
* Virtual ports (vale, pipe, monitor...)
* should never use this flag.
*/
#define NAF_NETMAP_ON 32 /* netmap is active (either native or
* emulated). Where possible (e.g. FreeBSD)
* IFCAP_NETMAP also mirrors this flag.
*/
#define NAF_HOST_RINGS 64 /* the adapter supports the host rings */
#define NAF_FORCE_NATIVE 128 /* the adapter is always NATIVE */
#define NAF_BUSY (1U<<31) /* the adapter is used internally and
* cannot be registered from userspace
*/
int active_fds; /* number of user-space descriptors using this
interface, which is equal to the number of
struct netmap_if objs in the mapped region. */
u_int num_rx_rings; /* number of adapter receive rings */
u_int num_tx_rings; /* number of adapter transmit rings */
u_int num_tx_desc; /* number of descriptor in each queue */
u_int num_rx_desc;
/* tx_rings and rx_rings are private but allocated
* as a contiguous chunk of memory. Each array has
* N+1 entries, for the adapter queues and for the host queue.
*/
struct netmap_kring *tx_rings; /* array of TX rings. */
struct netmap_kring *rx_rings; /* array of RX rings. */
void *tailroom; /* space below the rings array */
/* (used for leases) */
NM_SELINFO_T si[NR_TXRX]; /* global wait queues */
/* count users of the global wait queues */
int si_users[NR_TXRX];
void *pdev; /* used to store pci device */
/* copy of if_qflush and if_transmit pointers, to intercept
* packets from the network stack when netmap is active.
*/
int (*if_transmit)(struct ifnet *, struct mbuf *);
/* copy of if_input for netmap_send_up() */
void (*if_input)(struct ifnet *, struct mbuf *);
/* references to the ifnet and device routines, used by
* the generic netmap functions.
*/
struct ifnet *ifp; /* adapter is ifp->if_softc */
/*---- callbacks for this netmap adapter -----*/
/*
* nm_dtor() is the cleanup routine called when destroying
* the adapter.
* Called with NMG_LOCK held.
*
* nm_register() is called on NIOCREGIF and close() to enter
* or exit netmap mode on the NIC
* Called with NNG_LOCK held.
*
* nm_txsync() pushes packets to the underlying hw/switch
*
* nm_rxsync() collects packets from the underlying hw/switch
*
* nm_config() returns configuration information from the OS
* Called with NMG_LOCK held.
*
* nm_krings_create() create and init the tx_rings and
* rx_rings arrays of kring structures. In particular,
* set the nm_sync callbacks for each ring.
* There is no need to also allocate the corresponding
* netmap_rings, since netmap_mem_rings_create() will always
* be called to provide the missing ones.
* Called with NNG_LOCK held.
*
* nm_krings_delete() cleanup and delete the tx_rings and rx_rings
* arrays
* Called with NMG_LOCK held.
*
* nm_notify() is used to act after data have become available
* (or the stopped state of the ring has changed)
* For hw devices this is typically a selwakeup(),
* but for NIC/host ports attached to a switch (or vice-versa)
* we also need to invoke the 'txsync' code downstream.
*/
void (*nm_dtor)(struct netmap_adapter *);
int (*nm_register)(struct netmap_adapter *, int onoff);
int (*nm_txsync)(struct netmap_kring *kring, int flags);
int (*nm_rxsync)(struct netmap_kring *kring, int flags);
int (*nm_notify)(struct netmap_kring *kring, int flags);
#define NAF_FORCE_READ 1
#define NAF_FORCE_RECLAIM 2
/* return configuration information */
int (*nm_config)(struct netmap_adapter *,
u_int *txr, u_int *txd, u_int *rxr, u_int *rxd);
int (*nm_krings_create)(struct netmap_adapter *);
void (*nm_krings_delete)(struct netmap_adapter *);
#ifdef WITH_VALE
/*
* nm_bdg_attach() initializes the na_vp field to point
* to an adapter that can be attached to a VALE switch. If the
* current adapter is already a VALE port, na_vp is simply a cast;
* otherwise, na_vp points to a netmap_bwrap_adapter.
* If applicable, this callback also initializes na_hostvp,
* that can be used to connect the adapter host rings to the
* switch.
* Called with NMG_LOCK held.
*
* nm_bdg_ctl() is called on the actual attach/detach to/from
* to/from the switch, to perform adapter-specific
* initializations
* Called with NMG_LOCK held.
*/
int (*nm_bdg_attach)(const char *bdg_name, struct netmap_adapter *);
int (*nm_bdg_ctl)(struct netmap_adapter *, struct nmreq *, int);
/* adapter used to attach this adapter to a VALE switch (if any) */
struct netmap_vp_adapter *na_vp;
/* adapter used to attach the host rings of this adapter
* to a VALE switch (if any) */
struct netmap_vp_adapter *na_hostvp;
#endif
/* standard refcount to control the lifetime of the adapter
* (it should be equal to the lifetime of the corresponding ifp)
*/
int na_refcount;
/* memory allocator (opaque)
* We also cache a pointer to the lut_entry for translating
* buffer addresses, and the total number of buffers.
*/
struct netmap_mem_d *nm_mem;
struct netmap_lut na_lut;
/* additional information attached to this adapter
* by other netmap subsystems. Currently used by
* bwrap and LINUX/v1000.
*/
void *na_private;
/* array of pipes that have this adapter as a parent */
struct netmap_pipe_adapter **na_pipes;
int na_next_pipe; /* next free slot in the array */
int na_max_pipes; /* size of the array */
char name[64];
};
static __inline u_int
nma_get_ndesc(struct netmap_adapter *na, enum txrx t)
{
return (t == NR_TX ? na->num_tx_desc : na->num_rx_desc);
}
static __inline void
nma_set_ndesc(struct netmap_adapter *na, enum txrx t, u_int v)
{
if (t == NR_TX)
na->num_tx_desc = v;
else
na->num_rx_desc = v;
}
static __inline u_int
nma_get_nrings(struct netmap_adapter *na, enum txrx t)
{
return (t == NR_TX ? na->num_tx_rings : na->num_rx_rings);
}
static __inline void
nma_set_nrings(struct netmap_adapter *na, enum txrx t, u_int v)
{
if (t == NR_TX)
na->num_tx_rings = v;
else
na->num_rx_rings = v;
}
static __inline struct netmap_kring*
NMR(struct netmap_adapter *na, enum txrx t)
{
return (t == NR_TX ? na->tx_rings : na->rx_rings);
}
/*
* If the NIC is owned by the kernel
* (i.e., bridge), neither another bridge nor user can use it;
* if the NIC is owned by a user, only users can share it.
* Evaluation must be done under NMG_LOCK().
*/
#define NETMAP_OWNED_BY_KERN(na) ((na)->na_flags & NAF_BUSY)
#define NETMAP_OWNED_BY_ANY(na) \
(NETMAP_OWNED_BY_KERN(na) || ((na)->active_fds > 0))
/*
* derived netmap adapters for various types of ports
*/
struct netmap_vp_adapter { /* VALE software port */
struct netmap_adapter up;
/*
* Bridge support:
*
* bdg_port is the port number used in the bridge;
* na_bdg points to the bridge this NA is attached to.
*/
int bdg_port;
struct nm_bridge *na_bdg;
int retry;
/* Offset of ethernet header for each packet. */
u_int virt_hdr_len;
/* Maximum Frame Size, used in bdg_mismatch_datapath() */
u_int mfs;
/* Last source MAC on this port */
uint64_t last_smac;
};
struct netmap_hw_adapter { /* physical device */
struct netmap_adapter up;
struct net_device_ops nm_ndo; // XXX linux only
struct ethtool_ops nm_eto; // XXX linux only
const struct ethtool_ops* save_ethtool;
int (*nm_hw_register)(struct netmap_adapter *, int onoff);
};
#ifdef WITH_GENERIC
/* Mitigation support. */
struct nm_generic_mit {
struct hrtimer mit_timer;
int mit_pending;
int mit_ring_idx; /* index of the ring being mitigated */
struct netmap_adapter *mit_na; /* backpointer */
};
struct netmap_generic_adapter { /* emulated device */
struct netmap_hw_adapter up;
/* Pointer to a previously used netmap adapter. */
struct netmap_adapter *prev;
/* generic netmap adapters support:
* a net_device_ops struct overrides ndo_select_queue(),
* save_if_input saves the if_input hook (FreeBSD),
* mit implements rx interrupt mitigation,
*/
struct net_device_ops generic_ndo;
void (*save_if_input)(struct ifnet *, struct mbuf *);
struct nm_generic_mit *mit;
#ifdef linux
netdev_tx_t (*save_start_xmit)(struct mbuf *, struct ifnet *);
#endif
};
#endif /* WITH_GENERIC */
static __inline int
netmap_real_rings(struct netmap_adapter *na, enum txrx t)
{
return nma_get_nrings(na, t) + !!(na->na_flags & NAF_HOST_RINGS);
}
#ifdef WITH_VALE
/*
* Bridge wrapper for non VALE ports attached to a VALE switch.
*
* The real device must already have its own netmap adapter (hwna).
* The bridge wrapper and the hwna adapter share the same set of
* netmap rings and buffers, but they have two separate sets of
* krings descriptors, with tx/rx meanings swapped:
*
* netmap
* bwrap krings rings krings hwna
* +------+ +------+ +-----+ +------+ +------+
* |tx_rings->| |\ /| |----| |<-tx_rings|
* | | +------+ \ / +-----+ +------+ | |
* | | X | |
* | | / \ | |
* | | +------+/ \+-----+ +------+ | |
* |rx_rings->| | | |----| |<-rx_rings|
* | | +------+ +-----+ +------+ | |
* +------+ +------+
*
* - packets coming from the bridge go to the brwap rx rings,
* which are also the hwna tx rings. The bwrap notify callback
* will then complete the hwna tx (see netmap_bwrap_notify).
*
* - packets coming from the outside go to the hwna rx rings,
* which are also the bwrap tx rings. The (overwritten) hwna
* notify method will then complete the bridge tx
* (see netmap_bwrap_intr_notify).
*
* The bridge wrapper may optionally connect the hwna 'host' rings
* to the bridge. This is done by using a second port in the
* bridge and connecting it to the 'host' netmap_vp_adapter
* contained in the netmap_bwrap_adapter. The brwap host adapter
* cross-links the hwna host rings in the same way as shown above.
*
* - packets coming from the bridge and directed to the host stack
* are handled by the bwrap host notify callback
* (see netmap_bwrap_host_notify)
*
* - packets coming from the host stack are still handled by the
* overwritten hwna notify callback (netmap_bwrap_intr_notify),
* but are diverted to the host adapter depending on the ring number.
*
*/
struct netmap_bwrap_adapter {
struct netmap_vp_adapter up;
struct netmap_vp_adapter host; /* for host rings */
struct netmap_adapter *hwna; /* the underlying device */
/* backup of the hwna memory allocator */
struct netmap_mem_d *save_nmd;
/*
* When we attach a physical interface to the bridge, we
* allow the controlling process to terminate, so we need
* a place to store the n_detmap_priv_d data structure.
* This is only done when physical interfaces
* are attached to a bridge.
*/
struct netmap_priv_d *na_kpriv;
};
int netmap_bwrap_attach(const char *name, struct netmap_adapter *);
#endif /* WITH_VALE */
#ifdef WITH_PIPES
#define NM_MAXPIPES 64 /* max number of pipes per adapter */
struct netmap_pipe_adapter {
struct netmap_adapter up;
u_int id; /* pipe identifier */
int role; /* either NR_REG_PIPE_MASTER or NR_REG_PIPE_SLAVE */
struct netmap_adapter *parent; /* adapter that owns the memory */
struct netmap_pipe_adapter *peer; /* the other end of the pipe */
int peer_ref; /* 1 iff we are holding a ref to the peer */
u_int parent_slot; /* index in the parent pipe array */
};
#endif /* WITH_PIPES */
/* return slots reserved to rx clients; used in drivers */
static inline uint32_t
nm_kr_rxspace(struct netmap_kring *k)
{
int space = k->nr_hwtail - k->nr_hwcur;
if (space < 0)
space += k->nkr_num_slots;
ND("preserving %d rx slots %d -> %d", space, k->nr_hwcur, k->nr_hwtail);
return space;
}
/* True if no space in the tx ring. only valid after txsync_prologue */
static inline int
nm_kr_txempty(struct netmap_kring *kring)
{
return kring->rcur == kring->nr_hwtail;
}
/*
* protect against multiple threads using the same ring.
* also check that the ring has not been stopped.
* We only care for 0 or !=0 as a return code.
*/
#define NM_KR_BUSY 1
#define NM_KR_STOPPED 2
static __inline void nm_kr_put(struct netmap_kring *kr)
{
NM_ATOMIC_CLEAR(&kr->nr_busy);
}
static __inline int nm_kr_tryget(struct netmap_kring *kr)
{
/* check a first time without taking the lock
* to avoid starvation for nm_kr_get()
*/
if (unlikely(kr->nkr_stopped)) {
ND("ring %p stopped (%d)", kr, kr->nkr_stopped);
return NM_KR_STOPPED;
}
if (unlikely(NM_ATOMIC_TEST_AND_SET(&kr->nr_busy)))
return NM_KR_BUSY;
/* check a second time with lock held */
if (unlikely(kr->nkr_stopped)) {
ND("ring %p stopped (%d)", kr, kr->nkr_stopped);
nm_kr_put(kr);
return NM_KR_STOPPED;
}
return 0;
}
static __inline void nm_kr_get(struct netmap_kring *kr)
{
while (NM_ATOMIC_TEST_AND_SET(&kr->nr_busy))
tsleep(kr, 0, "NM_KR_GET", 4);
}
/*
* The following functions are used by individual drivers to
* support netmap operation.
*
* netmap_attach() initializes a struct netmap_adapter, allocating the
* struct netmap_ring's and the struct selinfo.
*
* netmap_detach() frees the memory allocated by netmap_attach().
*
* netmap_transmit() replaces the if_transmit routine of the interface,
* and is used to intercept packets coming from the stack.
*
* netmap_load_map/netmap_reload_map are helper routines to set/reset
* the dmamap for a packet buffer
*
* netmap_reset() is a helper routine to be called in the hw driver
* when reinitializing a ring. It should not be called by
* virtual ports (vale, pipes, monitor)
*/
int netmap_attach(struct netmap_adapter *);
void netmap_detach(struct ifnet *);
int netmap_transmit(struct ifnet *, struct mbuf *);
struct netmap_slot *netmap_reset(struct netmap_adapter *na,
enum txrx tx, u_int n, u_int new_cur);
int netmap_ring_reinit(struct netmap_kring *);
/* default functions to handle rx/tx interrupts */
int netmap_rx_irq(struct ifnet *, u_int, u_int *);
#define netmap_tx_irq(_n, _q) netmap_rx_irq(_n, _q, NULL)
void netmap_common_irq(struct ifnet *, u_int, u_int *work_done);
#ifdef WITH_VALE
/* functions used by external modules to interface with VALE */
#define netmap_vp_to_ifp(_vp) ((_vp)->up.ifp)
#define netmap_ifp_to_vp(_ifp) (NA(_ifp)->na_vp)
#define netmap_ifp_to_host_vp(_ifp) (NA(_ifp)->na_hostvp)
#define netmap_bdg_idx(_vp) ((_vp)->bdg_port)
const char *netmap_bdg_name(struct netmap_vp_adapter *);
#else /* !WITH_VALE */
#define netmap_vp_to_ifp(_vp) NULL
#define netmap_ifp_to_vp(_ifp) NULL
#define netmap_ifp_to_host_vp(_ifp) NULL
#define netmap_bdg_idx(_vp) -1
#define netmap_bdg_name(_vp) NULL
#endif /* WITH_VALE */
static inline int
nm_netmap_on(struct netmap_adapter *na)
{
return na && na->na_flags & NAF_NETMAP_ON;
}
static inline int
nm_native_on(struct netmap_adapter *na)
{
return nm_netmap_on(na) && (na->na_flags & NAF_NATIVE);
}
/* set/clear native flags and if_transmit/netdev_ops */
static inline void
nm_set_native_flags(struct netmap_adapter *na)
{
struct ifnet *ifp = na->ifp;
na->na_flags |= NAF_NETMAP_ON;
#ifdef IFCAP_NETMAP /* or FreeBSD ? */
ifp->if_capenable |= IFCAP_NETMAP;
#endif
#ifdef __FreeBSD__
na->if_transmit = ifp->if_transmit;
ifp->if_transmit = netmap_transmit;
#else
na->if_transmit = (void *)ifp->netdev_ops;
ifp->netdev_ops = &((struct netmap_hw_adapter *)na)->nm_ndo;
((struct netmap_hw_adapter *)na)->save_ethtool = ifp->ethtool_ops;
ifp->ethtool_ops = &((struct netmap_hw_adapter*)na)->nm_eto;
#endif
}
static inline void
nm_clear_native_flags(struct netmap_adapter *na)
{
struct ifnet *ifp = na->ifp;
#ifdef __FreeBSD__
ifp->if_transmit = na->if_transmit;
#else
ifp->netdev_ops = (void *)na->if_transmit;
ifp->ethtool_ops = ((struct netmap_hw_adapter*)na)->save_ethtool;
#endif
na->na_flags &= ~NAF_NETMAP_ON;
#ifdef IFCAP_NETMAP /* or FreeBSD ? */
ifp->if_capenable &= ~IFCAP_NETMAP;
#endif
}
/* check/fix address and len in tx rings */
#if 1 /* debug version */
#define NM_CHECK_ADDR_LEN(_na, _a, _l) do { \
if (_a == NETMAP_BUF_BASE(_na) || _l > NETMAP_BUF_SIZE(_na)) { \
RD(5, "bad addr/len ring %d slot %d idx %d len %d", \
kring->ring_id, nm_i, slot->buf_idx, len); \
if (_l > NETMAP_BUF_SIZE(_na)) \
_l = NETMAP_BUF_SIZE(_na); \
} } while (0)
#else /* no debug version */
#define NM_CHECK_ADDR_LEN(_na, _a, _l) do { \
if (_l > NETMAP_BUF_SIZE(_na)) \
_l = NETMAP_BUF_SIZE(_na); \
} while (0)
#endif
/*---------------------------------------------------------------*/
/*
* Support routines used by netmap subsystems
* (native drivers, VALE, generic, pipes, monitors, ...)
*/
/* common routine for all functions that create a netmap adapter. It performs
* two main tasks:
* - if the na points to an ifp, mark the ifp as netmap capable
* using na as its native adapter;
* - provide defaults for the setup callbacks and the memory allocator
*/
int netmap_attach_common(struct netmap_adapter *);
/* common actions to be performed on netmap adapter destruction */
void netmap_detach_common(struct netmap_adapter *);
/* fill priv->np_[tr]xq{first,last} using the ringid and flags information
* coming from a struct nmreq
*/
int netmap_interp_ringid(struct netmap_priv_d *priv, uint16_t ringid, uint32_t flags);
/* update the ring parameters (number and size of tx and rx rings).
* It calls the nm_config callback, if available.
*/
int netmap_update_config(struct netmap_adapter *na);
/* create and initialize the common fields of the krings array.
* using the information that must be already available in the na.
* tailroom can be used to request the allocation of additional
* tailroom bytes after the krings array. This is used by
* netmap_vp_adapter's (i.e., VALE ports) to make room for
* leasing-related data structures
*/
int netmap_krings_create(struct netmap_adapter *na, u_int tailroom);
/* deletes the kring array of the adapter. The array must have
* been created using netmap_krings_create
*/
void netmap_krings_delete(struct netmap_adapter *na);
int netmap_rxsync_from_host(struct netmap_adapter *na, struct thread *td, void *pwait);
/* set the stopped/enabled status of ring
* When stopping, they also wait for all current activity on the ring to
* terminate. The status change is then notified using the na nm_notify
* callback.
*/
void netmap_set_ring(struct netmap_adapter *, u_int ring_id, enum txrx, int stopped);
/* set the stopped/enabled status of all rings of the adapter. */
void netmap_set_all_rings(struct netmap_adapter *, int stopped);
/* convenience wrappers for netmap_set_all_rings, used in drivers */
void netmap_disable_all_rings(struct ifnet *);
void netmap_enable_all_rings(struct ifnet *);
int netmap_rxsync_from_host(struct netmap_adapter *na, struct thread *td, void *pwait);
int
netmap_do_regif(struct netmap_priv_d *priv, struct netmap_adapter *na,
uint16_t ringid, uint32_t flags);
u_int nm_bound_var(u_int *v, u_int dflt, u_int lo, u_int hi, const char *msg);
int netmap_get_na(struct nmreq *nmr, struct netmap_adapter **na, int create);
int netmap_get_hw_na(struct ifnet *ifp, struct netmap_adapter **na);
#ifdef WITH_VALE
/*
* The following bridge-related functions are used by other
* kernel modules.
*
* VALE only supports unicast or broadcast. The lookup
* function can return 0 .. NM_BDG_MAXPORTS-1 for regular ports,
* NM_BDG_MAXPORTS for broadcast, NM_BDG_MAXPORTS+1 for unknown.
* XXX in practice "unknown" might be handled same as broadcast.
*/
typedef u_int (*bdg_lookup_fn_t)(struct nm_bdg_fwd *ft, uint8_t *ring_nr,
struct netmap_vp_adapter *);
typedef int (*bdg_config_fn_t)(struct nm_ifreq *);
typedef void (*bdg_dtor_fn_t)(const struct netmap_vp_adapter *);
struct netmap_bdg_ops {
bdg_lookup_fn_t lookup;
bdg_config_fn_t config;
bdg_dtor_fn_t dtor;
};
u_int netmap_bdg_learning(struct nm_bdg_fwd *ft, uint8_t *dst_ring,
struct netmap_vp_adapter *);
#define NM_BDG_MAXPORTS 254 /* up to 254 */
#define NM_BDG_BROADCAST NM_BDG_MAXPORTS
#define NM_BDG_NOPORT (NM_BDG_MAXPORTS+1)
#define NM_NAME "vale" /* prefix for bridge port name */
/* these are redefined in case of no VALE support */
int netmap_get_bdg_na(struct nmreq *nmr, struct netmap_adapter **na, int create);
struct nm_bridge *netmap_init_bridges2(u_int);
void netmap_uninit_bridges2(struct nm_bridge *, u_int);
int netmap_init_bridges(void);
void netmap_uninit_bridges(void);
int netmap_bdg_ctl(struct nmreq *nmr, struct netmap_bdg_ops *bdg_ops);
int netmap_bdg_config(struct nmreq *nmr);
#else /* !WITH_VALE */
#define netmap_get_bdg_na(_1, _2, _3) 0
#define netmap_init_bridges(_1) 0
#define netmap_uninit_bridges()
#define netmap_bdg_ctl(_1, _2) EINVAL
#endif /* !WITH_VALE */
#ifdef WITH_PIPES
/* max number of pipes per device */
#define NM_MAXPIPES 64 /* XXX how many? */
void netmap_pipe_dealloc(struct netmap_adapter *);
int netmap_get_pipe_na(struct nmreq *nmr, struct netmap_adapter **na, int create);
#else /* !WITH_PIPES */
#define NM_MAXPIPES 0
#define netmap_pipe_alloc(_1, _2) 0
#define netmap_pipe_dealloc(_1)
#define netmap_get_pipe_na(nmr, _2, _3) \
({ int role__ = (nmr)->nr_flags & NR_REG_MASK; \
(role__ == NR_REG_PIPE_MASTER || \
role__ == NR_REG_PIPE_SLAVE) ? EOPNOTSUPP : 0; })
#endif
#ifdef WITH_MONITOR
int netmap_get_monitor_na(struct nmreq *nmr, struct netmap_adapter **na, int create);
void netmap_monitor_stop(struct netmap_adapter *na);
#else
#define netmap_get_monitor_na(nmr, _2, _3) \
((nmr)->nr_flags & (NR_MONITOR_TX | NR_MONITOR_RX) ? EOPNOTSUPP : 0)
#endif
#ifdef CONFIG_NET_NS
struct net *netmap_bns_get(void);
void netmap_bns_put(struct net *);
void netmap_bns_getbridges(struct nm_bridge **, u_int *);
#else
#define netmap_bns_get()
#define netmap_bns_put(_1)
#define netmap_bns_getbridges(b, n) \
do { *b = nm_bridges; *n = NM_BRIDGES; } while (0)
#endif
/* Various prototypes */
int netmap_poll(struct cdev *dev, int events, struct thread *td);
int netmap_init(void);
void netmap_fini(void);
int netmap_get_memory(struct netmap_priv_d* p);
void netmap_dtor(void *data);
int netmap_dtor_locked(struct netmap_priv_d *priv);
int netmap_ioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td);
/* netmap_adapter creation/destruction */
// #define NM_DEBUG_PUTGET 1
#ifdef NM_DEBUG_PUTGET
#define NM_DBG(f) __##f
void __netmap_adapter_get(struct netmap_adapter *na);
#define netmap_adapter_get(na) \
do { \
struct netmap_adapter *__na = na; \
D("getting %p:%s (%d)", __na, (__na)->name, (__na)->na_refcount); \
__netmap_adapter_get(__na); \
} while (0)
int __netmap_adapter_put(struct netmap_adapter *na);
#define netmap_adapter_put(na) \
({ \
struct netmap_adapter *__na = na; \
D("putting %p:%s (%d)", __na, (__na)->name, (__na)->na_refcount); \
__netmap_adapter_put(__na); \
})
#else /* !NM_DEBUG_PUTGET */
#define NM_DBG(f) f
void netmap_adapter_get(struct netmap_adapter *na);
int netmap_adapter_put(struct netmap_adapter *na);
#endif /* !NM_DEBUG_PUTGET */
/*
* module variables
*/
#define NETMAP_BUF_BASE(na) ((na)->na_lut.lut[0].vaddr)
#define NETMAP_BUF_SIZE(na) ((na)->na_lut.objsize)
extern int netmap_mitigate; // XXX not really used
extern int netmap_no_pendintr;
extern int netmap_verbose; // XXX debugging
enum { /* verbose flags */
NM_VERB_ON = 1, /* generic verbose */
NM_VERB_HOST = 0x2, /* verbose host stack */
NM_VERB_RXSYNC = 0x10, /* verbose on rxsync/txsync */
NM_VERB_TXSYNC = 0x20,
NM_VERB_RXINTR = 0x100, /* verbose on rx/tx intr (driver) */
NM_VERB_TXINTR = 0x200,
NM_VERB_NIC_RXSYNC = 0x1000, /* verbose on rx/tx intr (driver) */
NM_VERB_NIC_TXSYNC = 0x2000,
};
extern int netmap_txsync_retry;
extern int netmap_generic_mit;
extern int netmap_generic_ringsize;
extern int netmap_generic_rings;
/*
* NA returns a pointer to the struct netmap adapter from the ifp,
* WNA is used to write it.
*/
#define NA(_ifp) ((struct netmap_adapter *)WNA(_ifp))
/*
* Macros to determine if an interface is netmap capable or netmap enabled.
* See the magic field in struct netmap_adapter.
*/
#ifdef __FreeBSD__
/*
* on FreeBSD just use if_capabilities and if_capenable.
*/
#define NETMAP_CAPABLE(ifp) (NA(ifp) && \
(ifp)->if_capabilities & IFCAP_NETMAP )
#define NETMAP_SET_CAPABLE(ifp) \
(ifp)->if_capabilities |= IFCAP_NETMAP
#else /* linux */
/*
* on linux:
* we check if NA(ifp) is set and its first element has a related
* magic value. The capenable is within the struct netmap_adapter.
*/
#define NETMAP_MAGIC 0x52697a7a
#define NETMAP_CAPABLE(ifp) (NA(ifp) && \
((uint32_t)(uintptr_t)NA(ifp) ^ NA(ifp)->magic) == NETMAP_MAGIC )
#define NETMAP_SET_CAPABLE(ifp) \
NA(ifp)->magic = ((uint32_t)(uintptr_t)NA(ifp)) ^ NETMAP_MAGIC
#endif /* linux */
#ifdef __FreeBSD__
/* Assigns the device IOMMU domain to an allocator.
* Returns -ENOMEM in case the domain is different */
#define nm_iommu_group_id(dev) (0)
/* Callback invoked by the dma machinery after a successful dmamap_load */
static void netmap_dmamap_cb(__unused void *arg,
__unused bus_dma_segment_t * segs, __unused int nseg, __unused int error)
{
}
/* bus_dmamap_load wrapper: call aforementioned function if map != NULL.
* XXX can we do it without a callback ?
*/
static inline void
netmap_load_map(struct netmap_adapter *na,
bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
{
if (map)
bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na),
netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT);
}
static inline void
netmap_unload_map(struct netmap_adapter *na,
bus_dma_tag_t tag, bus_dmamap_t map)
{
if (map)
bus_dmamap_unload(tag, map);
}
/* update the map when a buffer changes. */
static inline void
netmap_reload_map(struct netmap_adapter *na,
bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
{
if (map) {
bus_dmamap_unload(tag, map);
bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na),
netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT);
}
}
#else /* linux */
int nm_iommu_group_id(bus_dma_tag_t dev);
#include <linux/dma-mapping.h>
static inline void
netmap_load_map(struct netmap_adapter *na,
bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
{
if (0 && map) {
*map = dma_map_single(na->pdev, buf, na->na_lut.objsize,
DMA_BIDIRECTIONAL);
}
}
static inline void
netmap_unload_map(struct netmap_adapter *na,
bus_dma_tag_t tag, bus_dmamap_t map)
{
u_int sz = na->na_lut.objsize;
if (*map) {
dma_unmap_single(na->pdev, *map, sz,
DMA_BIDIRECTIONAL);
}
}
static inline void
netmap_reload_map(struct netmap_adapter *na,
bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
{
u_int sz = na->na_lut.objsize;
if (*map) {
dma_unmap_single(na->pdev, *map, sz,
DMA_BIDIRECTIONAL);
}
*map = dma_map_single(na->pdev, buf, sz,
DMA_BIDIRECTIONAL);
}
/*
* XXX How do we redefine these functions:
*
* on linux we need
* dma_map_single(&pdev->dev, virt_addr, len, direction)
* dma_unmap_single(&adapter->pdev->dev, phys_addr, len, direction
* The len can be implicit (on netmap it is NETMAP_BUF_SIZE)
* unfortunately the direction is not, so we need to change
* something to have a cross API
*/
#if 0
struct e1000_buffer *buffer_info = &tx_ring->buffer_info[l];
/* set time_stamp *before* dma to help avoid a possible race */
buffer_info->time_stamp = jiffies;
buffer_info->mapped_as_page = false;
buffer_info->length = len;
//buffer_info->next_to_watch = l;
/* reload dma map */
dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
NETMAP_BUF_SIZE, DMA_TO_DEVICE);
buffer_info->dma = dma_map_single(&adapter->pdev->dev,
addr, NETMAP_BUF_SIZE, DMA_TO_DEVICE);
if (dma_mapping_error(&adapter->pdev->dev, buffer_info->dma)) {
D("dma mapping error");
/* goto dma_error; See e1000_put_txbuf() */
/* XXX reset */
}
tx_desc->buffer_addr = htole64(buffer_info->dma); //XXX
#endif
/*
* The bus_dmamap_sync() can be one of wmb() or rmb() depending on direction.
*/
#define bus_dmamap_sync(_a, _b, _c)
#endif /* linux */
/*
* functions to map NIC to KRING indexes (n2k) and vice versa (k2n)
*/
static inline int
netmap_idx_n2k(struct netmap_kring *kr, int idx)
{
int n = kr->nkr_num_slots;
idx += kr->nkr_hwofs;
if (idx < 0)
return idx + n;
else if (idx < n)
return idx;
else
return idx - n;
}
static inline int
netmap_idx_k2n(struct netmap_kring *kr, int idx)
{
int n = kr->nkr_num_slots;
idx -= kr->nkr_hwofs;
if (idx < 0)
return idx + n;
else if (idx < n)
return idx;
else
return idx - n;
}
/* Entries of the look-up table. */
struct lut_entry {
void *vaddr; /* virtual address. */
vm_paddr_t paddr; /* physical address. */
};
struct netmap_obj_pool;
/*
* NMB return the virtual address of a buffer (buffer 0 on bad index)
* PNMB also fills the physical address
*/
static inline void *
NMB(struct netmap_adapter *na, struct netmap_slot *slot)
{
struct lut_entry *lut = na->na_lut.lut;
uint32_t i = slot->buf_idx;
return (unlikely(i >= na->na_lut.objtotal)) ?
lut[0].vaddr : lut[i].vaddr;
}
static inline void *
PNMB(struct netmap_adapter *na, struct netmap_slot *slot, uint64_t *pp)
{
uint32_t i = slot->buf_idx;
struct lut_entry *lut = na->na_lut.lut;
void *ret = (i >= na->na_lut.objtotal) ? lut[0].vaddr : lut[i].vaddr;
*pp = (i >= na->na_lut.objtotal) ? lut[0].paddr : lut[i].paddr;
return ret;
}
/* Generic version of NMB, which uses device-specific memory. */
void netmap_txsync_to_host(struct netmap_adapter *na);
/*
* Structure associated to each thread which registered an interface.
*
* The first 4 fields of this structure are written by NIOCREGIF and
* read by poll() and NIOC?XSYNC.
*
* There is low contention among writers (a correct user program
* should have none) and among writers and readers, so we use a
* single global lock to protect the structure initialization;
* since initialization involves the allocation of memory,
* we reuse the memory allocator lock.
*
* Read access to the structure is lock free. Readers must check that
* np_nifp is not NULL before using the other fields.
* If np_nifp is NULL initialization has not been performed,
* so they should return an error to userspace.
*
* The ref_done field (XXX ?) is used to regulate access to the refcount in the
* memory allocator. The refcount must be incremented at most once for
* each open("/dev/netmap"). The increment is performed by the first
* function that calls netmap_get_memory() (currently called by
* mmap(), NIOCGINFO and NIOCREGIF).
* If the refcount is incremented, it is then decremented when the
* private structure is destroyed.
*/
struct netmap_priv_d {
struct netmap_if * volatile np_nifp; /* netmap if descriptor. */
struct netmap_adapter *np_na;
uint32_t np_flags; /* from the ioctl */
u_int np_qfirst[NR_TXRX],
np_qlast[NR_TXRX]; /* range of tx/rx rings to scan */
uint16_t np_txpoll; /* XXX and also np_rxpoll ? */
/* np_refcount is only used on FreeBSD */
int np_refcount; /* use with NMG_LOCK held */
/* pointers to the selinfo to be used for selrecord.
* Either the local or the global one depending on the
* number of rings.
*/
NM_SELINFO_T *np_si[NR_TXRX];
struct thread *np_td; /* kqueue, just debugging */
};
#ifdef WITH_MONITOR
struct netmap_monitor_adapter {
struct netmap_adapter up;
struct netmap_priv_d priv;
uint32_t flags;
};
#endif /* WITH_MONITOR */
#ifdef WITH_GENERIC
/*
* generic netmap emulation for devices that do not have
* native netmap support.
*/
int generic_netmap_attach(struct ifnet *ifp);
int netmap_catch_rx(struct netmap_generic_adapter *na, int intercept);
void generic_rx_handler(struct ifnet *ifp, struct mbuf *m);;
void netmap_catch_tx(struct netmap_generic_adapter *na, int enable);
int generic_xmit_frame(struct ifnet *ifp, struct mbuf *m, void *addr, u_int len, u_int ring_nr);
int generic_find_num_desc(struct ifnet *ifp, u_int *tx, u_int *rx);
void generic_find_num_queues(struct ifnet *ifp, u_int *txq, u_int *rxq);
static inline struct ifnet*
netmap_generic_getifp(struct netmap_generic_adapter *gna)
{
if (gna->prev)
return gna->prev->ifp;
return gna->up.up.ifp;
}
//#define RATE_GENERIC /* Enables communication statistics for generic. */
#ifdef RATE_GENERIC
void generic_rate(int txp, int txs, int txi, int rxp, int rxs, int rxi);
#else
#define generic_rate(txp, txs, txi, rxp, rxs, rxi)
#endif
/*
* netmap_mitigation API. This is used by the generic adapter
* to reduce the number of interrupt requests/selwakeup
* to clients on incoming packets.
*/
void netmap_mitigation_init(struct nm_generic_mit *mit, int idx,
struct netmap_adapter *na);
void netmap_mitigation_start(struct nm_generic_mit *mit);
void netmap_mitigation_restart(struct nm_generic_mit *mit);
int netmap_mitigation_active(struct nm_generic_mit *mit);
void netmap_mitigation_cleanup(struct nm_generic_mit *mit);
#endif /* WITH_GENERIC */
/* Shared declarations for the VALE switch. */
/*
* Each transmit queue accumulates a batch of packets into
* a structure before forwarding. Packets to the same
* destination are put in a list using ft_next as a link field.
* ft_frags and ft_next are valid only on the first fragment.
*/
struct nm_bdg_fwd { /* forwarding entry for a bridge */
void *ft_buf; /* netmap or indirect buffer */
uint8_t ft_frags; /* how many fragments (only on 1st frag) */
uint8_t _ft_port; /* dst port (unused) */
uint16_t ft_flags; /* flags, e.g. indirect */
uint16_t ft_len; /* src fragment len */
uint16_t ft_next; /* next packet to same destination */
};
/* struct 'virtio_net_hdr' from linux. */
struct nm_vnet_hdr {
#define VIRTIO_NET_HDR_F_NEEDS_CSUM 1 /* Use csum_start, csum_offset */
#define VIRTIO_NET_HDR_F_DATA_VALID 2 /* Csum is valid */
uint8_t flags;
#define VIRTIO_NET_HDR_GSO_NONE 0 /* Not a GSO frame */
#define VIRTIO_NET_HDR_GSO_TCPV4 1 /* GSO frame, IPv4 TCP (TSO) */
#define VIRTIO_NET_HDR_GSO_UDP 3 /* GSO frame, IPv4 UDP (UFO) */
#define VIRTIO_NET_HDR_GSO_TCPV6 4 /* GSO frame, IPv6 TCP */
#define VIRTIO_NET_HDR_GSO_ECN 0x80 /* TCP has ECN set */
uint8_t gso_type;
uint16_t hdr_len;
uint16_t gso_size;
uint16_t csum_start;
uint16_t csum_offset;
};
#define WORST_CASE_GSO_HEADER (14+40+60) /* IPv6 + TCP */
/* Private definitions for IPv4, IPv6, UDP and TCP headers. */
struct nm_iphdr {
uint8_t version_ihl;
uint8_t tos;
uint16_t tot_len;
uint16_t id;
uint16_t frag_off;
uint8_t ttl;
uint8_t protocol;
uint16_t check;
uint32_t saddr;
uint32_t daddr;
/*The options start here. */
};
struct nm_tcphdr {
uint16_t source;
uint16_t dest;
uint32_t seq;
uint32_t ack_seq;
uint8_t doff; /* Data offset + Reserved */
uint8_t flags;
uint16_t window;
uint16_t check;
uint16_t urg_ptr;
};
struct nm_udphdr {
uint16_t source;
uint16_t dest;
uint16_t len;
uint16_t check;
};
struct nm_ipv6hdr {
uint8_t priority_version;
uint8_t flow_lbl[3];
uint16_t payload_len;
uint8_t nexthdr;
uint8_t hop_limit;
uint8_t saddr[16];
uint8_t daddr[16];
};
/* Type used to store a checksum (in host byte order) that hasn't been
* folded yet.
*/
#define rawsum_t uint32_t
rawsum_t nm_csum_raw(uint8_t *data, size_t len, rawsum_t cur_sum);
uint16_t nm_csum_ipv4(struct nm_iphdr *iph);
void nm_csum_tcpudp_ipv4(struct nm_iphdr *iph, void *data,
size_t datalen, uint16_t *check);
void nm_csum_tcpudp_ipv6(struct nm_ipv6hdr *ip6h, void *data,
size_t datalen, uint16_t *check);
uint16_t nm_csum_fold(rawsum_t cur_sum);
void bdg_mismatch_datapath(struct netmap_vp_adapter *na,
struct netmap_vp_adapter *dst_na,
struct nm_bdg_fwd *ft_p, struct netmap_ring *ring,
u_int *j, u_int lim, u_int *howmany);
/* persistent virtual port routines */
int nm_vi_persist(const char *, struct ifnet **);
void nm_vi_detach(struct ifnet *);
void nm_vi_init_index(void);
#endif /* _NET_NETMAP_KERN_H_ */