mirror of
https://github.com/opnsense/src.git
synced 2026-02-21 00:40:33 -05:00
1735 lines
59 KiB
C++
1735 lines
59 KiB
C++
//===--- Type.cpp - Type representation and manipulation ------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements type-related functionality.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/Type.h"
|
|
#include "clang/AST/DeclCXX.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/AST/DeclTemplate.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/PrettyPrinter.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
using namespace clang;
|
|
|
|
bool QualType::isConstant(ASTContext &Ctx) const {
|
|
if (isConstQualified())
|
|
return true;
|
|
|
|
if (getTypePtr()->isArrayType())
|
|
return Ctx.getAsArrayType(*this)->getElementType().isConstant(Ctx);
|
|
|
|
return false;
|
|
}
|
|
|
|
void Type::Destroy(ASTContext& C) {
|
|
this->~Type();
|
|
C.Deallocate(this);
|
|
}
|
|
|
|
void VariableArrayType::Destroy(ASTContext& C) {
|
|
if (SizeExpr)
|
|
SizeExpr->Destroy(C);
|
|
this->~VariableArrayType();
|
|
C.Deallocate(this);
|
|
}
|
|
|
|
void DependentSizedArrayType::Destroy(ASTContext& C) {
|
|
SizeExpr->Destroy(C);
|
|
this->~DependentSizedArrayType();
|
|
C.Deallocate(this);
|
|
}
|
|
|
|
void DependentSizedExtVectorType::Destroy(ASTContext& C) {
|
|
if (SizeExpr)
|
|
SizeExpr->Destroy(C);
|
|
this->~DependentSizedExtVectorType();
|
|
C.Deallocate(this);
|
|
}
|
|
|
|
/// getArrayElementTypeNoTypeQual - If this is an array type, return the
|
|
/// element type of the array, potentially with type qualifiers missing.
|
|
/// This method should never be used when type qualifiers are meaningful.
|
|
const Type *Type::getArrayElementTypeNoTypeQual() const {
|
|
// If this is directly an array type, return it.
|
|
if (const ArrayType *ATy = dyn_cast<ArrayType>(this))
|
|
return ATy->getElementType().getTypePtr();
|
|
|
|
// If the canonical form of this type isn't the right kind, reject it.
|
|
if (!isa<ArrayType>(CanonicalType)) {
|
|
// Look through type qualifiers
|
|
if (ArrayType *AT = dyn_cast<ArrayType>(CanonicalType.getUnqualifiedType()))
|
|
return AT->getElementType().getTypePtr();
|
|
return 0;
|
|
}
|
|
|
|
// If this is a typedef for an array type, strip the typedef off without
|
|
// losing all typedef information.
|
|
return cast<ArrayType>(getDesugaredType())->getElementType().getTypePtr();
|
|
}
|
|
|
|
/// getDesugaredType - Return the specified type with any "sugar" removed from
|
|
/// the type. This takes off typedefs, typeof's etc. If the outer level of
|
|
/// the type is already concrete, it returns it unmodified. This is similar
|
|
/// to getting the canonical type, but it doesn't remove *all* typedefs. For
|
|
/// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
|
|
/// concrete.
|
|
///
|
|
/// \param ForDisplay When true, the desugaring is provided for
|
|
/// display purposes only. In this case, we apply more heuristics to
|
|
/// decide whether it is worth providing a desugared form of the type
|
|
/// or not.
|
|
QualType QualType::getDesugaredType(bool ForDisplay) const {
|
|
return getTypePtr()->getDesugaredType(ForDisplay)
|
|
.getWithAdditionalQualifiers(getCVRQualifiers());
|
|
}
|
|
|
|
/// getDesugaredType - Return the specified type with any "sugar" removed from
|
|
/// type type. This takes off typedefs, typeof's etc. If the outer level of
|
|
/// the type is already concrete, it returns it unmodified. This is similar
|
|
/// to getting the canonical type, but it doesn't remove *all* typedefs. For
|
|
/// example, it return "T*" as "T*", (not as "int*"), because the pointer is
|
|
/// concrete.
|
|
///
|
|
/// \param ForDisplay When true, the desugaring is provided for
|
|
/// display purposes only. In this case, we apply more heuristics to
|
|
/// decide whether it is worth providing a desugared form of the type
|
|
/// or not.
|
|
QualType Type::getDesugaredType(bool ForDisplay) const {
|
|
if (const TypedefType *TDT = dyn_cast<TypedefType>(this))
|
|
return TDT->LookThroughTypedefs().getDesugaredType();
|
|
if (const TypeOfExprType *TOE = dyn_cast<TypeOfExprType>(this))
|
|
return TOE->getUnderlyingExpr()->getType().getDesugaredType();
|
|
if (const TypeOfType *TOT = dyn_cast<TypeOfType>(this))
|
|
return TOT->getUnderlyingType().getDesugaredType();
|
|
if (const DecltypeType *DTT = dyn_cast<DecltypeType>(this))
|
|
return DTT->getUnderlyingExpr()->getType().getDesugaredType();
|
|
if (const TemplateSpecializationType *Spec
|
|
= dyn_cast<TemplateSpecializationType>(this)) {
|
|
if (ForDisplay)
|
|
return QualType(this, 0);
|
|
|
|
QualType Canon = Spec->getCanonicalTypeInternal();
|
|
if (Canon->getAsTemplateSpecializationType())
|
|
return QualType(this, 0);
|
|
return Canon->getDesugaredType();
|
|
}
|
|
if (const QualifiedNameType *QualName = dyn_cast<QualifiedNameType>(this)) {
|
|
if (ForDisplay) {
|
|
// If desugaring the type that the qualified name is referring to
|
|
// produces something interesting, that's our desugared type.
|
|
QualType NamedType = QualName->getNamedType().getDesugaredType();
|
|
if (NamedType != QualName->getNamedType())
|
|
return NamedType;
|
|
} else
|
|
return QualName->getNamedType().getDesugaredType();
|
|
}
|
|
|
|
return QualType(this, 0);
|
|
}
|
|
|
|
/// isVoidType - Helper method to determine if this is the 'void' type.
|
|
bool Type::isVoidType() const {
|
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
|
|
return BT->getKind() == BuiltinType::Void;
|
|
if (const ExtQualType *AS = dyn_cast<ExtQualType>(CanonicalType))
|
|
return AS->getBaseType()->isVoidType();
|
|
return false;
|
|
}
|
|
|
|
bool Type::isObjectType() const {
|
|
if (isa<FunctionType>(CanonicalType) || isa<ReferenceType>(CanonicalType) ||
|
|
isa<IncompleteArrayType>(CanonicalType) || isVoidType())
|
|
return false;
|
|
if (const ExtQualType *AS = dyn_cast<ExtQualType>(CanonicalType))
|
|
return AS->getBaseType()->isObjectType();
|
|
return true;
|
|
}
|
|
|
|
bool Type::isDerivedType() const {
|
|
switch (CanonicalType->getTypeClass()) {
|
|
case ExtQual:
|
|
return cast<ExtQualType>(CanonicalType)->getBaseType()->isDerivedType();
|
|
case Pointer:
|
|
case VariableArray:
|
|
case ConstantArray:
|
|
case IncompleteArray:
|
|
case FunctionProto:
|
|
case FunctionNoProto:
|
|
case LValueReference:
|
|
case RValueReference:
|
|
case Record:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool Type::isClassType() const {
|
|
if (const RecordType *RT = getAsRecordType())
|
|
return RT->getDecl()->isClass();
|
|
return false;
|
|
}
|
|
bool Type::isStructureType() const {
|
|
if (const RecordType *RT = getAsRecordType())
|
|
return RT->getDecl()->isStruct();
|
|
return false;
|
|
}
|
|
bool Type::isUnionType() const {
|
|
if (const RecordType *RT = getAsRecordType())
|
|
return RT->getDecl()->isUnion();
|
|
return false;
|
|
}
|
|
|
|
bool Type::isComplexType() const {
|
|
if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
|
|
return CT->getElementType()->isFloatingType();
|
|
if (const ExtQualType *AS = dyn_cast<ExtQualType>(CanonicalType))
|
|
return AS->getBaseType()->isComplexType();
|
|
return false;
|
|
}
|
|
|
|
bool Type::isComplexIntegerType() const {
|
|
// Check for GCC complex integer extension.
|
|
if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
|
|
return CT->getElementType()->isIntegerType();
|
|
if (const ExtQualType *AS = dyn_cast<ExtQualType>(CanonicalType))
|
|
return AS->getBaseType()->isComplexIntegerType();
|
|
return false;
|
|
}
|
|
|
|
const ComplexType *Type::getAsComplexIntegerType() const {
|
|
// Are we directly a complex type?
|
|
if (const ComplexType *CTy = dyn_cast<ComplexType>(this)) {
|
|
if (CTy->getElementType()->isIntegerType())
|
|
return CTy;
|
|
return 0;
|
|
}
|
|
|
|
// If the canonical form of this type isn't what we want, reject it.
|
|
if (!isa<ComplexType>(CanonicalType)) {
|
|
// Look through type qualifiers (e.g. ExtQualType's).
|
|
if (isa<ComplexType>(CanonicalType.getUnqualifiedType()))
|
|
return CanonicalType.getUnqualifiedType()->getAsComplexIntegerType();
|
|
return 0;
|
|
}
|
|
|
|
// If this is a typedef for a complex type, strip the typedef off without
|
|
// losing all typedef information.
|
|
return cast<ComplexType>(getDesugaredType());
|
|
}
|
|
|
|
const BuiltinType *Type::getAsBuiltinType() const {
|
|
// If this is directly a builtin type, return it.
|
|
if (const BuiltinType *BTy = dyn_cast<BuiltinType>(this))
|
|
return BTy;
|
|
|
|
// If the canonical form of this type isn't a builtin type, reject it.
|
|
if (!isa<BuiltinType>(CanonicalType)) {
|
|
// Look through type qualifiers (e.g. ExtQualType's).
|
|
if (isa<BuiltinType>(CanonicalType.getUnqualifiedType()))
|
|
return CanonicalType.getUnqualifiedType()->getAsBuiltinType();
|
|
return 0;
|
|
}
|
|
|
|
// If this is a typedef for a builtin type, strip the typedef off without
|
|
// losing all typedef information.
|
|
return cast<BuiltinType>(getDesugaredType());
|
|
}
|
|
|
|
const FunctionType *Type::getAsFunctionType() const {
|
|
// If this is directly a function type, return it.
|
|
if (const FunctionType *FTy = dyn_cast<FunctionType>(this))
|
|
return FTy;
|
|
|
|
// If the canonical form of this type isn't the right kind, reject it.
|
|
if (!isa<FunctionType>(CanonicalType)) {
|
|
// Look through type qualifiers
|
|
if (isa<FunctionType>(CanonicalType.getUnqualifiedType()))
|
|
return CanonicalType.getUnqualifiedType()->getAsFunctionType();
|
|
return 0;
|
|
}
|
|
|
|
// If this is a typedef for a function type, strip the typedef off without
|
|
// losing all typedef information.
|
|
return cast<FunctionType>(getDesugaredType());
|
|
}
|
|
|
|
const FunctionNoProtoType *Type::getAsFunctionNoProtoType() const {
|
|
return dyn_cast_or_null<FunctionNoProtoType>(getAsFunctionType());
|
|
}
|
|
|
|
const FunctionProtoType *Type::getAsFunctionProtoType() const {
|
|
return dyn_cast_or_null<FunctionProtoType>(getAsFunctionType());
|
|
}
|
|
|
|
|
|
const PointerType *Type::getAsPointerType() const {
|
|
// If this is directly a pointer type, return it.
|
|
if (const PointerType *PTy = dyn_cast<PointerType>(this))
|
|
return PTy;
|
|
|
|
// If the canonical form of this type isn't the right kind, reject it.
|
|
if (!isa<PointerType>(CanonicalType)) {
|
|
// Look through type qualifiers
|
|
if (isa<PointerType>(CanonicalType.getUnqualifiedType()))
|
|
return CanonicalType.getUnqualifiedType()->getAsPointerType();
|
|
return 0;
|
|
}
|
|
|
|
// If this is a typedef for a pointer type, strip the typedef off without
|
|
// losing all typedef information.
|
|
return cast<PointerType>(getDesugaredType());
|
|
}
|
|
|
|
const BlockPointerType *Type::getAsBlockPointerType() const {
|
|
// If this is directly a block pointer type, return it.
|
|
if (const BlockPointerType *PTy = dyn_cast<BlockPointerType>(this))
|
|
return PTy;
|
|
|
|
// If the canonical form of this type isn't the right kind, reject it.
|
|
if (!isa<BlockPointerType>(CanonicalType)) {
|
|
// Look through type qualifiers
|
|
if (isa<BlockPointerType>(CanonicalType.getUnqualifiedType()))
|
|
return CanonicalType.getUnqualifiedType()->getAsBlockPointerType();
|
|
return 0;
|
|
}
|
|
|
|
// If this is a typedef for a block pointer type, strip the typedef off
|
|
// without losing all typedef information.
|
|
return cast<BlockPointerType>(getDesugaredType());
|
|
}
|
|
|
|
const ReferenceType *Type::getAsReferenceType() const {
|
|
// If this is directly a reference type, return it.
|
|
if (const ReferenceType *RTy = dyn_cast<ReferenceType>(this))
|
|
return RTy;
|
|
|
|
// If the canonical form of this type isn't the right kind, reject it.
|
|
if (!isa<ReferenceType>(CanonicalType)) {
|
|
// Look through type qualifiers
|
|
if (isa<ReferenceType>(CanonicalType.getUnqualifiedType()))
|
|
return CanonicalType.getUnqualifiedType()->getAsReferenceType();
|
|
return 0;
|
|
}
|
|
|
|
// If this is a typedef for a reference type, strip the typedef off without
|
|
// losing all typedef information.
|
|
return cast<ReferenceType>(getDesugaredType());
|
|
}
|
|
|
|
const LValueReferenceType *Type::getAsLValueReferenceType() const {
|
|
// If this is directly an lvalue reference type, return it.
|
|
if (const LValueReferenceType *RTy = dyn_cast<LValueReferenceType>(this))
|
|
return RTy;
|
|
|
|
// If the canonical form of this type isn't the right kind, reject it.
|
|
if (!isa<LValueReferenceType>(CanonicalType)) {
|
|
// Look through type qualifiers
|
|
if (isa<LValueReferenceType>(CanonicalType.getUnqualifiedType()))
|
|
return CanonicalType.getUnqualifiedType()->getAsLValueReferenceType();
|
|
return 0;
|
|
}
|
|
|
|
// If this is a typedef for an lvalue reference type, strip the typedef off
|
|
// without losing all typedef information.
|
|
return cast<LValueReferenceType>(getDesugaredType());
|
|
}
|
|
|
|
const RValueReferenceType *Type::getAsRValueReferenceType() const {
|
|
// If this is directly an rvalue reference type, return it.
|
|
if (const RValueReferenceType *RTy = dyn_cast<RValueReferenceType>(this))
|
|
return RTy;
|
|
|
|
// If the canonical form of this type isn't the right kind, reject it.
|
|
if (!isa<RValueReferenceType>(CanonicalType)) {
|
|
// Look through type qualifiers
|
|
if (isa<RValueReferenceType>(CanonicalType.getUnqualifiedType()))
|
|
return CanonicalType.getUnqualifiedType()->getAsRValueReferenceType();
|
|
return 0;
|
|
}
|
|
|
|
// If this is a typedef for an rvalue reference type, strip the typedef off
|
|
// without losing all typedef information.
|
|
return cast<RValueReferenceType>(getDesugaredType());
|
|
}
|
|
|
|
const MemberPointerType *Type::getAsMemberPointerType() const {
|
|
// If this is directly a member pointer type, return it.
|
|
if (const MemberPointerType *MTy = dyn_cast<MemberPointerType>(this))
|
|
return MTy;
|
|
|
|
// If the canonical form of this type isn't the right kind, reject it.
|
|
if (!isa<MemberPointerType>(CanonicalType)) {
|
|
// Look through type qualifiers
|
|
if (isa<MemberPointerType>(CanonicalType.getUnqualifiedType()))
|
|
return CanonicalType.getUnqualifiedType()->getAsMemberPointerType();
|
|
return 0;
|
|
}
|
|
|
|
// If this is a typedef for a member pointer type, strip the typedef off
|
|
// without losing all typedef information.
|
|
return cast<MemberPointerType>(getDesugaredType());
|
|
}
|
|
|
|
/// isVariablyModifiedType (C99 6.7.5p3) - Return true for variable length
|
|
/// array types and types that contain variable array types in their
|
|
/// declarator
|
|
bool Type::isVariablyModifiedType() const {
|
|
// A VLA is a variably modified type.
|
|
if (isVariableArrayType())
|
|
return true;
|
|
|
|
// An array can contain a variably modified type
|
|
if (const Type *T = getArrayElementTypeNoTypeQual())
|
|
return T->isVariablyModifiedType();
|
|
|
|
// A pointer can point to a variably modified type.
|
|
// Also, C++ references and member pointers can point to a variably modified
|
|
// type, where VLAs appear as an extension to C++, and should be treated
|
|
// correctly.
|
|
if (const PointerType *PT = getAsPointerType())
|
|
return PT->getPointeeType()->isVariablyModifiedType();
|
|
if (const ReferenceType *RT = getAsReferenceType())
|
|
return RT->getPointeeType()->isVariablyModifiedType();
|
|
if (const MemberPointerType *PT = getAsMemberPointerType())
|
|
return PT->getPointeeType()->isVariablyModifiedType();
|
|
|
|
// A function can return a variably modified type
|
|
// This one isn't completely obvious, but it follows from the
|
|
// definition in C99 6.7.5p3. Because of this rule, it's
|
|
// illegal to declare a function returning a variably modified type.
|
|
if (const FunctionType *FT = getAsFunctionType())
|
|
return FT->getResultType()->isVariablyModifiedType();
|
|
|
|
return false;
|
|
}
|
|
|
|
const RecordType *Type::getAsRecordType() const {
|
|
// If this is directly a record type, return it.
|
|
if (const RecordType *RTy = dyn_cast<RecordType>(this))
|
|
return RTy;
|
|
|
|
// If the canonical form of this type isn't the right kind, reject it.
|
|
if (!isa<RecordType>(CanonicalType)) {
|
|
// Look through type qualifiers
|
|
if (isa<RecordType>(CanonicalType.getUnqualifiedType()))
|
|
return CanonicalType.getUnqualifiedType()->getAsRecordType();
|
|
return 0;
|
|
}
|
|
|
|
// If this is a typedef for a record type, strip the typedef off without
|
|
// losing all typedef information.
|
|
return cast<RecordType>(getDesugaredType());
|
|
}
|
|
|
|
const TagType *Type::getAsTagType() const {
|
|
// If this is directly a tag type, return it.
|
|
if (const TagType *TagTy = dyn_cast<TagType>(this))
|
|
return TagTy;
|
|
|
|
// If the canonical form of this type isn't the right kind, reject it.
|
|
if (!isa<TagType>(CanonicalType)) {
|
|
// Look through type qualifiers
|
|
if (isa<TagType>(CanonicalType.getUnqualifiedType()))
|
|
return CanonicalType.getUnqualifiedType()->getAsTagType();
|
|
return 0;
|
|
}
|
|
|
|
// If this is a typedef for a tag type, strip the typedef off without
|
|
// losing all typedef information.
|
|
return cast<TagType>(getDesugaredType());
|
|
}
|
|
|
|
const RecordType *Type::getAsStructureType() const {
|
|
// If this is directly a structure type, return it.
|
|
if (const RecordType *RT = dyn_cast<RecordType>(this)) {
|
|
if (RT->getDecl()->isStruct())
|
|
return RT;
|
|
}
|
|
|
|
// If the canonical form of this type isn't the right kind, reject it.
|
|
if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
|
|
if (!RT->getDecl()->isStruct())
|
|
return 0;
|
|
|
|
// If this is a typedef for a structure type, strip the typedef off without
|
|
// losing all typedef information.
|
|
return cast<RecordType>(getDesugaredType());
|
|
}
|
|
// Look through type qualifiers
|
|
if (isa<RecordType>(CanonicalType.getUnqualifiedType()))
|
|
return CanonicalType.getUnqualifiedType()->getAsStructureType();
|
|
return 0;
|
|
}
|
|
|
|
const RecordType *Type::getAsUnionType() const {
|
|
// If this is directly a union type, return it.
|
|
if (const RecordType *RT = dyn_cast<RecordType>(this)) {
|
|
if (RT->getDecl()->isUnion())
|
|
return RT;
|
|
}
|
|
|
|
// If the canonical form of this type isn't the right kind, reject it.
|
|
if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
|
|
if (!RT->getDecl()->isUnion())
|
|
return 0;
|
|
|
|
// If this is a typedef for a union type, strip the typedef off without
|
|
// losing all typedef information.
|
|
return cast<RecordType>(getDesugaredType());
|
|
}
|
|
|
|
// Look through type qualifiers
|
|
if (isa<RecordType>(CanonicalType.getUnqualifiedType()))
|
|
return CanonicalType.getUnqualifiedType()->getAsUnionType();
|
|
return 0;
|
|
}
|
|
|
|
const EnumType *Type::getAsEnumType() const {
|
|
// Check the canonicalized unqualified type directly; the more complex
|
|
// version is unnecessary because there isn't any typedef information
|
|
// to preserve.
|
|
return dyn_cast<EnumType>(CanonicalType.getUnqualifiedType());
|
|
}
|
|
|
|
const ComplexType *Type::getAsComplexType() const {
|
|
// Are we directly a complex type?
|
|
if (const ComplexType *CTy = dyn_cast<ComplexType>(this))
|
|
return CTy;
|
|
|
|
// If the canonical form of this type isn't the right kind, reject it.
|
|
if (!isa<ComplexType>(CanonicalType)) {
|
|
// Look through type qualifiers
|
|
if (isa<ComplexType>(CanonicalType.getUnqualifiedType()))
|
|
return CanonicalType.getUnqualifiedType()->getAsComplexType();
|
|
return 0;
|
|
}
|
|
|
|
// If this is a typedef for a complex type, strip the typedef off without
|
|
// losing all typedef information.
|
|
return cast<ComplexType>(getDesugaredType());
|
|
}
|
|
|
|
const VectorType *Type::getAsVectorType() const {
|
|
// Are we directly a vector type?
|
|
if (const VectorType *VTy = dyn_cast<VectorType>(this))
|
|
return VTy;
|
|
|
|
// If the canonical form of this type isn't the right kind, reject it.
|
|
if (!isa<VectorType>(CanonicalType)) {
|
|
// Look through type qualifiers
|
|
if (isa<VectorType>(CanonicalType.getUnqualifiedType()))
|
|
return CanonicalType.getUnqualifiedType()->getAsVectorType();
|
|
return 0;
|
|
}
|
|
|
|
// If this is a typedef for a vector type, strip the typedef off without
|
|
// losing all typedef information.
|
|
return cast<VectorType>(getDesugaredType());
|
|
}
|
|
|
|
const ExtVectorType *Type::getAsExtVectorType() const {
|
|
// Are we directly an OpenCU vector type?
|
|
if (const ExtVectorType *VTy = dyn_cast<ExtVectorType>(this))
|
|
return VTy;
|
|
|
|
// If the canonical form of this type isn't the right kind, reject it.
|
|
if (!isa<ExtVectorType>(CanonicalType)) {
|
|
// Look through type qualifiers
|
|
if (isa<ExtVectorType>(CanonicalType.getUnqualifiedType()))
|
|
return CanonicalType.getUnqualifiedType()->getAsExtVectorType();
|
|
return 0;
|
|
}
|
|
|
|
// If this is a typedef for an extended vector type, strip the typedef off
|
|
// without losing all typedef information.
|
|
return cast<ExtVectorType>(getDesugaredType());
|
|
}
|
|
|
|
const ObjCInterfaceType *Type::getAsObjCInterfaceType() const {
|
|
// There is no sugar for ObjCInterfaceType's, just return the canonical
|
|
// type pointer if it is the right class. There is no typedef information to
|
|
// return and these cannot be Address-space qualified.
|
|
return dyn_cast<ObjCInterfaceType>(CanonicalType.getUnqualifiedType());
|
|
}
|
|
|
|
const ObjCObjectPointerType *Type::getAsObjCObjectPointerType() const {
|
|
// There is no sugar for ObjCObjectPointerType's, just return the
|
|
// canonical type pointer if it is the right class.
|
|
return dyn_cast<ObjCObjectPointerType>(CanonicalType.getUnqualifiedType());
|
|
}
|
|
|
|
const ObjCQualifiedInterfaceType *
|
|
Type::getAsObjCQualifiedInterfaceType() const {
|
|
// There is no sugar for ObjCQualifiedInterfaceType's, just return the
|
|
// canonical type pointer if it is the right class.
|
|
return dyn_cast<ObjCQualifiedInterfaceType>(CanonicalType.getUnqualifiedType());
|
|
}
|
|
|
|
const ObjCObjectPointerType *Type::getAsObjCQualifiedIdType() const {
|
|
// There is no sugar for ObjCQualifiedIdType's, just return the canonical
|
|
// type pointer if it is the right class.
|
|
if (const ObjCObjectPointerType *OPT = getAsObjCObjectPointerType()) {
|
|
if (OPT->isObjCQualifiedIdType())
|
|
return OPT;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
const TemplateTypeParmType *Type::getAsTemplateTypeParmType() const {
|
|
// There is no sugar for template type parameters, so just return
|
|
// the canonical type pointer if it is the right class.
|
|
// FIXME: can these be address-space qualified?
|
|
return dyn_cast<TemplateTypeParmType>(CanonicalType);
|
|
}
|
|
|
|
const TemplateSpecializationType *
|
|
Type::getAsTemplateSpecializationType() const {
|
|
// There is no sugar for class template specialization types, so
|
|
// just return the canonical type pointer if it is the right class.
|
|
return dyn_cast<TemplateSpecializationType>(CanonicalType);
|
|
}
|
|
|
|
bool Type::isIntegerType() const {
|
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
|
|
return BT->getKind() >= BuiltinType::Bool &&
|
|
BT->getKind() <= BuiltinType::Int128;
|
|
if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
|
|
// Incomplete enum types are not treated as integer types.
|
|
// FIXME: In C++, enum types are never integer types.
|
|
if (TT->getDecl()->isEnum() && TT->getDecl()->isDefinition())
|
|
return true;
|
|
if (isa<FixedWidthIntType>(CanonicalType))
|
|
return true;
|
|
if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
|
|
return VT->getElementType()->isIntegerType();
|
|
if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CanonicalType))
|
|
return EXTQT->getBaseType()->isIntegerType();
|
|
return false;
|
|
}
|
|
|
|
bool Type::isIntegralType() const {
|
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
|
|
return BT->getKind() >= BuiltinType::Bool &&
|
|
BT->getKind() <= BuiltinType::LongLong;
|
|
if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
|
|
if (TT->getDecl()->isEnum() && TT->getDecl()->isDefinition())
|
|
return true; // Complete enum types are integral.
|
|
// FIXME: In C++, enum types are never integral.
|
|
if (isa<FixedWidthIntType>(CanonicalType))
|
|
return true;
|
|
if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CanonicalType))
|
|
return EXTQT->getBaseType()->isIntegralType();
|
|
return false;
|
|
}
|
|
|
|
bool Type::isEnumeralType() const {
|
|
if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
|
|
return TT->getDecl()->isEnum();
|
|
if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CanonicalType))
|
|
return EXTQT->getBaseType()->isEnumeralType();
|
|
return false;
|
|
}
|
|
|
|
bool Type::isBooleanType() const {
|
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
|
|
return BT->getKind() == BuiltinType::Bool;
|
|
if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CanonicalType))
|
|
return EXTQT->getBaseType()->isBooleanType();
|
|
return false;
|
|
}
|
|
|
|
bool Type::isCharType() const {
|
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
|
|
return BT->getKind() == BuiltinType::Char_U ||
|
|
BT->getKind() == BuiltinType::UChar ||
|
|
BT->getKind() == BuiltinType::Char_S ||
|
|
BT->getKind() == BuiltinType::SChar;
|
|
if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CanonicalType))
|
|
return EXTQT->getBaseType()->isCharType();
|
|
return false;
|
|
}
|
|
|
|
bool Type::isWideCharType() const {
|
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
|
|
return BT->getKind() == BuiltinType::WChar;
|
|
if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CanonicalType))
|
|
return EXTQT->getBaseType()->isWideCharType();
|
|
return false;
|
|
}
|
|
|
|
/// isSignedIntegerType - Return true if this is an integer type that is
|
|
/// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
|
|
/// an enum decl which has a signed representation, or a vector of signed
|
|
/// integer element type.
|
|
bool Type::isSignedIntegerType() const {
|
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
|
|
return BT->getKind() >= BuiltinType::Char_S &&
|
|
BT->getKind() <= BuiltinType::LongLong;
|
|
}
|
|
|
|
if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
|
|
return ET->getDecl()->getIntegerType()->isSignedIntegerType();
|
|
|
|
if (const FixedWidthIntType *FWIT =
|
|
dyn_cast<FixedWidthIntType>(CanonicalType))
|
|
return FWIT->isSigned();
|
|
|
|
if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
|
|
return VT->getElementType()->isSignedIntegerType();
|
|
if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CanonicalType))
|
|
return EXTQT->getBaseType()->isSignedIntegerType();
|
|
return false;
|
|
}
|
|
|
|
/// isUnsignedIntegerType - Return true if this is an integer type that is
|
|
/// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
|
|
/// decl which has an unsigned representation, or a vector of unsigned integer
|
|
/// element type.
|
|
bool Type::isUnsignedIntegerType() const {
|
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
|
|
return BT->getKind() >= BuiltinType::Bool &&
|
|
BT->getKind() <= BuiltinType::ULongLong;
|
|
}
|
|
|
|
if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
|
|
return ET->getDecl()->getIntegerType()->isUnsignedIntegerType();
|
|
|
|
if (const FixedWidthIntType *FWIT =
|
|
dyn_cast<FixedWidthIntType>(CanonicalType))
|
|
return !FWIT->isSigned();
|
|
|
|
if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
|
|
return VT->getElementType()->isUnsignedIntegerType();
|
|
if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CanonicalType))
|
|
return EXTQT->getBaseType()->isUnsignedIntegerType();
|
|
return false;
|
|
}
|
|
|
|
bool Type::isFloatingType() const {
|
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
|
|
return BT->getKind() >= BuiltinType::Float &&
|
|
BT->getKind() <= BuiltinType::LongDouble;
|
|
if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
|
|
return CT->getElementType()->isFloatingType();
|
|
if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
|
|
return VT->getElementType()->isFloatingType();
|
|
if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CanonicalType))
|
|
return EXTQT->getBaseType()->isFloatingType();
|
|
return false;
|
|
}
|
|
|
|
bool Type::isRealFloatingType() const {
|
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
|
|
return BT->getKind() >= BuiltinType::Float &&
|
|
BT->getKind() <= BuiltinType::LongDouble;
|
|
if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
|
|
return VT->getElementType()->isRealFloatingType();
|
|
if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CanonicalType))
|
|
return EXTQT->getBaseType()->isRealFloatingType();
|
|
return false;
|
|
}
|
|
|
|
bool Type::isRealType() const {
|
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
|
|
return BT->getKind() >= BuiltinType::Bool &&
|
|
BT->getKind() <= BuiltinType::LongDouble;
|
|
if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
|
|
return TT->getDecl()->isEnum() && TT->getDecl()->isDefinition();
|
|
if (isa<FixedWidthIntType>(CanonicalType))
|
|
return true;
|
|
if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
|
|
return VT->getElementType()->isRealType();
|
|
if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CanonicalType))
|
|
return EXTQT->getBaseType()->isRealType();
|
|
return false;
|
|
}
|
|
|
|
bool Type::isArithmeticType() const {
|
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
|
|
return BT->getKind() >= BuiltinType::Bool &&
|
|
BT->getKind() <= BuiltinType::LongDouble;
|
|
if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
|
|
// GCC allows forward declaration of enum types (forbid by C99 6.7.2.3p2).
|
|
// If a body isn't seen by the time we get here, return false.
|
|
return ET->getDecl()->isDefinition();
|
|
if (isa<FixedWidthIntType>(CanonicalType))
|
|
return true;
|
|
if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CanonicalType))
|
|
return EXTQT->getBaseType()->isArithmeticType();
|
|
return isa<ComplexType>(CanonicalType) || isa<VectorType>(CanonicalType);
|
|
}
|
|
|
|
bool Type::isScalarType() const {
|
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
|
|
return BT->getKind() != BuiltinType::Void;
|
|
if (const TagType *TT = dyn_cast<TagType>(CanonicalType)) {
|
|
// Enums are scalar types, but only if they are defined. Incomplete enums
|
|
// are not treated as scalar types.
|
|
if (TT->getDecl()->isEnum() && TT->getDecl()->isDefinition())
|
|
return true;
|
|
return false;
|
|
}
|
|
if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CanonicalType))
|
|
return EXTQT->getBaseType()->isScalarType();
|
|
if (isa<FixedWidthIntType>(CanonicalType))
|
|
return true;
|
|
return isa<PointerType>(CanonicalType) ||
|
|
isa<BlockPointerType>(CanonicalType) ||
|
|
isa<MemberPointerType>(CanonicalType) ||
|
|
isa<ComplexType>(CanonicalType) ||
|
|
isa<ObjCObjectPointerType>(CanonicalType);
|
|
}
|
|
|
|
/// \brief Determines whether the type is a C++ aggregate type or C
|
|
/// aggregate or union type.
|
|
///
|
|
/// An aggregate type is an array or a class type (struct, union, or
|
|
/// class) that has no user-declared constructors, no private or
|
|
/// protected non-static data members, no base classes, and no virtual
|
|
/// functions (C++ [dcl.init.aggr]p1). The notion of an aggregate type
|
|
/// subsumes the notion of C aggregates (C99 6.2.5p21) because it also
|
|
/// includes union types.
|
|
bool Type::isAggregateType() const {
|
|
if (const RecordType *Record = dyn_cast<RecordType>(CanonicalType)) {
|
|
if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(Record->getDecl()))
|
|
return ClassDecl->isAggregate();
|
|
|
|
return true;
|
|
}
|
|
|
|
if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CanonicalType))
|
|
return EXTQT->getBaseType()->isAggregateType();
|
|
return isa<ArrayType>(CanonicalType);
|
|
}
|
|
|
|
/// isConstantSizeType - Return true if this is not a variable sized type,
|
|
/// according to the rules of C99 6.7.5p3. It is not legal to call this on
|
|
/// incomplete types or dependent types.
|
|
bool Type::isConstantSizeType() const {
|
|
if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CanonicalType))
|
|
return EXTQT->getBaseType()->isConstantSizeType();
|
|
assert(!isIncompleteType() && "This doesn't make sense for incomplete types");
|
|
assert(!isDependentType() && "This doesn't make sense for dependent types");
|
|
// The VAT must have a size, as it is known to be complete.
|
|
return !isa<VariableArrayType>(CanonicalType);
|
|
}
|
|
|
|
/// isIncompleteType - Return true if this is an incomplete type (C99 6.2.5p1)
|
|
/// - a type that can describe objects, but which lacks information needed to
|
|
/// determine its size.
|
|
bool Type::isIncompleteType() const {
|
|
switch (CanonicalType->getTypeClass()) {
|
|
default: return false;
|
|
case ExtQual:
|
|
return cast<ExtQualType>(CanonicalType)->getBaseType()->isIncompleteType();
|
|
case Builtin:
|
|
// Void is the only incomplete builtin type. Per C99 6.2.5p19, it can never
|
|
// be completed.
|
|
return isVoidType();
|
|
case Record:
|
|
case Enum:
|
|
// A tagged type (struct/union/enum/class) is incomplete if the decl is a
|
|
// forward declaration, but not a full definition (C99 6.2.5p22).
|
|
return !cast<TagType>(CanonicalType)->getDecl()->isDefinition();
|
|
case IncompleteArray:
|
|
// An array of unknown size is an incomplete type (C99 6.2.5p22).
|
|
return true;
|
|
case ObjCInterface:
|
|
case ObjCQualifiedInterface:
|
|
// ObjC interfaces are incomplete if they are @class, not @interface.
|
|
return cast<ObjCInterfaceType>(this)->getDecl()->isForwardDecl();
|
|
}
|
|
}
|
|
|
|
/// isPODType - Return true if this is a plain-old-data type (C++ 3.9p10)
|
|
bool Type::isPODType() const {
|
|
// The compiler shouldn't query this for incomplete types, but the user might.
|
|
// We return false for that case.
|
|
if (isIncompleteType())
|
|
return false;
|
|
|
|
switch (CanonicalType->getTypeClass()) {
|
|
// Everything not explicitly mentioned is not POD.
|
|
default: return false;
|
|
case ExtQual:
|
|
return cast<ExtQualType>(CanonicalType)->getBaseType()->isPODType();
|
|
case VariableArray:
|
|
case ConstantArray:
|
|
// IncompleteArray is caught by isIncompleteType() above.
|
|
return cast<ArrayType>(CanonicalType)->getElementType()->isPODType();
|
|
|
|
case Builtin:
|
|
case Complex:
|
|
case Pointer:
|
|
case MemberPointer:
|
|
case Vector:
|
|
case ExtVector:
|
|
case ObjCObjectPointer:
|
|
return true;
|
|
|
|
case Enum:
|
|
return true;
|
|
|
|
case Record:
|
|
if (CXXRecordDecl *ClassDecl
|
|
= dyn_cast<CXXRecordDecl>(cast<RecordType>(CanonicalType)->getDecl()))
|
|
return ClassDecl->isPOD();
|
|
|
|
// C struct/union is POD.
|
|
return true;
|
|
}
|
|
}
|
|
|
|
bool Type::isPromotableIntegerType() const {
|
|
if (const BuiltinType *BT = getAsBuiltinType())
|
|
switch (BT->getKind()) {
|
|
case BuiltinType::Bool:
|
|
case BuiltinType::Char_S:
|
|
case BuiltinType::Char_U:
|
|
case BuiltinType::SChar:
|
|
case BuiltinType::UChar:
|
|
case BuiltinType::Short:
|
|
case BuiltinType::UShort:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool Type::isNullPtrType() const {
|
|
if (const BuiltinType *BT = getAsBuiltinType())
|
|
return BT->getKind() == BuiltinType::NullPtr;
|
|
return false;
|
|
}
|
|
|
|
bool Type::isSpecifierType() const {
|
|
// Note that this intentionally does not use the canonical type.
|
|
switch (getTypeClass()) {
|
|
case Builtin:
|
|
case Record:
|
|
case Enum:
|
|
case Typedef:
|
|
case Complex:
|
|
case TypeOfExpr:
|
|
case TypeOf:
|
|
case TemplateTypeParm:
|
|
case TemplateSpecialization:
|
|
case QualifiedName:
|
|
case Typename:
|
|
case ObjCInterface:
|
|
case ObjCQualifiedInterface:
|
|
case ObjCObjectPointer:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
const char *BuiltinType::getName(bool CPlusPlus) const {
|
|
switch (getKind()) {
|
|
default: assert(0 && "Unknown builtin type!");
|
|
case Void: return "void";
|
|
case Bool: return CPlusPlus? "bool" : "_Bool";
|
|
case Char_S: return "char";
|
|
case Char_U: return "char";
|
|
case SChar: return "signed char";
|
|
case Short: return "short";
|
|
case Int: return "int";
|
|
case Long: return "long";
|
|
case LongLong: return "long long";
|
|
case Int128: return "__int128_t";
|
|
case UChar: return "unsigned char";
|
|
case UShort: return "unsigned short";
|
|
case UInt: return "unsigned int";
|
|
case ULong: return "unsigned long";
|
|
case ULongLong: return "unsigned long long";
|
|
case UInt128: return "__uint128_t";
|
|
case Float: return "float";
|
|
case Double: return "double";
|
|
case LongDouble: return "long double";
|
|
case WChar: return "wchar_t";
|
|
case NullPtr: return "nullptr_t";
|
|
case Overload: return "<overloaded function type>";
|
|
case Dependent: return "<dependent type>";
|
|
case UndeducedAuto: return "<undeduced auto type>";
|
|
}
|
|
}
|
|
|
|
void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID, QualType Result,
|
|
arg_type_iterator ArgTys,
|
|
unsigned NumArgs, bool isVariadic,
|
|
unsigned TypeQuals, bool hasExceptionSpec,
|
|
bool anyExceptionSpec, unsigned NumExceptions,
|
|
exception_iterator Exs) {
|
|
ID.AddPointer(Result.getAsOpaquePtr());
|
|
for (unsigned i = 0; i != NumArgs; ++i)
|
|
ID.AddPointer(ArgTys[i].getAsOpaquePtr());
|
|
ID.AddInteger(isVariadic);
|
|
ID.AddInteger(TypeQuals);
|
|
ID.AddInteger(hasExceptionSpec);
|
|
if (hasExceptionSpec) {
|
|
ID.AddInteger(anyExceptionSpec);
|
|
for(unsigned i = 0; i != NumExceptions; ++i)
|
|
ID.AddPointer(Exs[i].getAsOpaquePtr());
|
|
}
|
|
}
|
|
|
|
void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID) {
|
|
Profile(ID, getResultType(), arg_type_begin(), NumArgs, isVariadic(),
|
|
getTypeQuals(), hasExceptionSpec(), hasAnyExceptionSpec(),
|
|
getNumExceptions(), exception_begin());
|
|
}
|
|
|
|
void ObjCObjectPointerType::Profile(llvm::FoldingSetNodeID &ID,
|
|
const ObjCInterfaceDecl *Decl,
|
|
ObjCProtocolDecl **protocols,
|
|
unsigned NumProtocols) {
|
|
ID.AddPointer(Decl);
|
|
for (unsigned i = 0; i != NumProtocols; i++)
|
|
ID.AddPointer(protocols[i]);
|
|
}
|
|
|
|
void ObjCObjectPointerType::Profile(llvm::FoldingSetNodeID &ID) {
|
|
Profile(ID, getDecl(), &Protocols[0], getNumProtocols());
|
|
}
|
|
|
|
void ObjCQualifiedInterfaceType::Profile(llvm::FoldingSetNodeID &ID,
|
|
const ObjCInterfaceDecl *Decl,
|
|
ObjCProtocolDecl **protocols,
|
|
unsigned NumProtocols) {
|
|
ID.AddPointer(Decl);
|
|
for (unsigned i = 0; i != NumProtocols; i++)
|
|
ID.AddPointer(protocols[i]);
|
|
}
|
|
|
|
void ObjCQualifiedInterfaceType::Profile(llvm::FoldingSetNodeID &ID) {
|
|
Profile(ID, getDecl(), &Protocols[0], getNumProtocols());
|
|
}
|
|
|
|
/// LookThroughTypedefs - Return the ultimate type this typedef corresponds to
|
|
/// potentially looking through *all* consequtive typedefs. This returns the
|
|
/// sum of the type qualifiers, so if you have:
|
|
/// typedef const int A;
|
|
/// typedef volatile A B;
|
|
/// looking through the typedefs for B will give you "const volatile A".
|
|
///
|
|
QualType TypedefType::LookThroughTypedefs() const {
|
|
// Usually, there is only a single level of typedefs, be fast in that case.
|
|
QualType FirstType = getDecl()->getUnderlyingType();
|
|
if (!isa<TypedefType>(FirstType))
|
|
return FirstType;
|
|
|
|
// Otherwise, do the fully general loop.
|
|
unsigned TypeQuals = 0;
|
|
const TypedefType *TDT = this;
|
|
while (1) {
|
|
QualType CurType = TDT->getDecl()->getUnderlyingType();
|
|
|
|
|
|
/// FIXME:
|
|
/// FIXME: This is incorrect for ExtQuals!
|
|
/// FIXME:
|
|
TypeQuals |= CurType.getCVRQualifiers();
|
|
|
|
TDT = dyn_cast<TypedefType>(CurType);
|
|
if (TDT == 0)
|
|
return QualType(CurType.getTypePtr(), TypeQuals);
|
|
}
|
|
}
|
|
|
|
TypeOfExprType::TypeOfExprType(Expr *E, QualType can)
|
|
: Type(TypeOfExpr, can, E->isTypeDependent()), TOExpr(E) {
|
|
assert(!isa<TypedefType>(can) && "Invalid canonical type");
|
|
}
|
|
|
|
DecltypeType::DecltypeType(Expr *E, QualType can)
|
|
: Type(Decltype, can, E->isTypeDependent()), E(E) {
|
|
assert(can->isDependentType() == E->isTypeDependent() &&
|
|
"type dependency mismatch!");
|
|
assert(!isa<TypedefType>(can) && "Invalid canonical type");
|
|
}
|
|
|
|
TagType::TagType(TypeClass TC, TagDecl *D, QualType can)
|
|
: Type(TC, can, D->isDependentType()), decl(D, 0) {}
|
|
|
|
bool RecordType::classof(const TagType *TT) {
|
|
return isa<RecordDecl>(TT->getDecl());
|
|
}
|
|
|
|
bool EnumType::classof(const TagType *TT) {
|
|
return isa<EnumDecl>(TT->getDecl());
|
|
}
|
|
|
|
bool
|
|
TemplateSpecializationType::
|
|
anyDependentTemplateArguments(const TemplateArgument *Args, unsigned NumArgs) {
|
|
for (unsigned Idx = 0; Idx < NumArgs; ++Idx) {
|
|
switch (Args[Idx].getKind()) {
|
|
case TemplateArgument::Null:
|
|
assert(false && "Should not have a NULL template argument");
|
|
break;
|
|
|
|
case TemplateArgument::Type:
|
|
if (Args[Idx].getAsType()->isDependentType())
|
|
return true;
|
|
break;
|
|
|
|
case TemplateArgument::Declaration:
|
|
case TemplateArgument::Integral:
|
|
// Never dependent
|
|
break;
|
|
|
|
case TemplateArgument::Expression:
|
|
if (Args[Idx].getAsExpr()->isTypeDependent() ||
|
|
Args[Idx].getAsExpr()->isValueDependent())
|
|
return true;
|
|
break;
|
|
|
|
case TemplateArgument::Pack:
|
|
assert(0 && "FIXME: Implement!");
|
|
break;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
TemplateSpecializationType::
|
|
TemplateSpecializationType(TemplateName T, const TemplateArgument *Args,
|
|
unsigned NumArgs, QualType Canon)
|
|
: Type(TemplateSpecialization,
|
|
Canon.isNull()? QualType(this, 0) : Canon,
|
|
T.isDependent() || anyDependentTemplateArguments(Args, NumArgs)),
|
|
Template(T), NumArgs(NumArgs)
|
|
{
|
|
assert((!Canon.isNull() ||
|
|
T.isDependent() || anyDependentTemplateArguments(Args, NumArgs)) &&
|
|
"No canonical type for non-dependent class template specialization");
|
|
|
|
TemplateArgument *TemplateArgs
|
|
= reinterpret_cast<TemplateArgument *>(this + 1);
|
|
for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
|
|
new (&TemplateArgs[Arg]) TemplateArgument(Args[Arg]);
|
|
}
|
|
|
|
void TemplateSpecializationType::Destroy(ASTContext& C) {
|
|
for (unsigned Arg = 0; Arg < NumArgs; ++Arg) {
|
|
// FIXME: Not all expressions get cloned, so we can't yet perform
|
|
// this destruction.
|
|
// if (Expr *E = getArg(Arg).getAsExpr())
|
|
// E->Destroy(C);
|
|
}
|
|
}
|
|
|
|
TemplateSpecializationType::iterator
|
|
TemplateSpecializationType::end() const {
|
|
return begin() + getNumArgs();
|
|
}
|
|
|
|
const TemplateArgument &
|
|
TemplateSpecializationType::getArg(unsigned Idx) const {
|
|
assert(Idx < getNumArgs() && "Template argument out of range");
|
|
return getArgs()[Idx];
|
|
}
|
|
|
|
void
|
|
TemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID,
|
|
TemplateName T,
|
|
const TemplateArgument *Args,
|
|
unsigned NumArgs) {
|
|
T.Profile(ID);
|
|
for (unsigned Idx = 0; Idx < NumArgs; ++Idx)
|
|
Args[Idx].Profile(ID);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Type Printing
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void QualType::dump(const char *msg) const {
|
|
PrintingPolicy Policy;
|
|
std::string R = "identifier";
|
|
getAsStringInternal(R, Policy);
|
|
if (msg)
|
|
fprintf(stderr, "%s: %s\n", msg, R.c_str());
|
|
else
|
|
fprintf(stderr, "%s\n", R.c_str());
|
|
}
|
|
void QualType::dump() const {
|
|
dump("");
|
|
}
|
|
|
|
void Type::dump() const {
|
|
std::string S = "identifier";
|
|
getAsStringInternal(S, PrintingPolicy());
|
|
fprintf(stderr, "%s\n", S.c_str());
|
|
}
|
|
|
|
|
|
|
|
static void AppendTypeQualList(std::string &S, unsigned TypeQuals) {
|
|
// Note: funkiness to ensure we get a space only between quals.
|
|
bool NonePrinted = true;
|
|
if (TypeQuals & QualType::Const)
|
|
S += "const", NonePrinted = false;
|
|
if (TypeQuals & QualType::Volatile)
|
|
S += (NonePrinted+" volatile"), NonePrinted = false;
|
|
if (TypeQuals & QualType::Restrict)
|
|
S += (NonePrinted+" restrict"), NonePrinted = false;
|
|
}
|
|
|
|
std::string QualType::getAsString() const {
|
|
std::string S;
|
|
getAsStringInternal(S, PrintingPolicy());
|
|
return S;
|
|
}
|
|
|
|
void
|
|
QualType::getAsStringInternal(std::string &S,
|
|
const PrintingPolicy &Policy) const {
|
|
if (isNull()) {
|
|
S += "NULL TYPE";
|
|
return;
|
|
}
|
|
|
|
if (Policy.SuppressSpecifiers && getTypePtr()->isSpecifierType())
|
|
return;
|
|
|
|
// Print qualifiers as appropriate.
|
|
if (unsigned Tq = getCVRQualifiers()) {
|
|
std::string TQS;
|
|
AppendTypeQualList(TQS, Tq);
|
|
if (!S.empty())
|
|
S = TQS + ' ' + S;
|
|
else
|
|
S = TQS;
|
|
}
|
|
|
|
getTypePtr()->getAsStringInternal(S, Policy);
|
|
}
|
|
|
|
void BuiltinType::getAsStringInternal(std::string &S,
|
|
const PrintingPolicy &Policy) const {
|
|
if (S.empty()) {
|
|
S = getName(Policy.CPlusPlus);
|
|
} else {
|
|
// Prefix the basic type, e.g. 'int X'.
|
|
S = ' ' + S;
|
|
S = getName(Policy.CPlusPlus) + S;
|
|
}
|
|
}
|
|
|
|
void FixedWidthIntType::getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const {
|
|
// FIXME: Once we get bitwidth attribute, write as
|
|
// "int __attribute__((bitwidth(x)))".
|
|
std::string prefix = "__clang_fixedwidth";
|
|
prefix += llvm::utostr_32(Width);
|
|
prefix += (char)(Signed ? 'S' : 'U');
|
|
if (S.empty()) {
|
|
S = prefix;
|
|
} else {
|
|
// Prefix the basic type, e.g. 'int X'.
|
|
S = prefix + S;
|
|
}
|
|
}
|
|
|
|
|
|
void ComplexType::getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const {
|
|
ElementType->getAsStringInternal(S, Policy);
|
|
S = "_Complex " + S;
|
|
}
|
|
|
|
void ExtQualType::getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const {
|
|
bool NeedsSpace = false;
|
|
if (AddressSpace) {
|
|
S = "__attribute__((address_space("+llvm::utostr_32(AddressSpace)+")))" + S;
|
|
NeedsSpace = true;
|
|
}
|
|
if (GCAttrType != QualType::GCNone) {
|
|
if (NeedsSpace)
|
|
S += ' ';
|
|
S += "__attribute__((objc_gc(";
|
|
if (GCAttrType == QualType::Weak)
|
|
S += "weak";
|
|
else
|
|
S += "strong";
|
|
S += ")))";
|
|
}
|
|
BaseType->getAsStringInternal(S, Policy);
|
|
}
|
|
|
|
void PointerType::getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const {
|
|
S = '*' + S;
|
|
|
|
// Handle things like 'int (*A)[4];' correctly.
|
|
// FIXME: this should include vectors, but vectors use attributes I guess.
|
|
if (isa<ArrayType>(getPointeeType()))
|
|
S = '(' + S + ')';
|
|
|
|
getPointeeType().getAsStringInternal(S, Policy);
|
|
}
|
|
|
|
void BlockPointerType::getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const {
|
|
S = '^' + S;
|
|
PointeeType.getAsStringInternal(S, Policy);
|
|
}
|
|
|
|
void LValueReferenceType::getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const {
|
|
S = '&' + S;
|
|
|
|
// Handle things like 'int (&A)[4];' correctly.
|
|
// FIXME: this should include vectors, but vectors use attributes I guess.
|
|
if (isa<ArrayType>(getPointeeType()))
|
|
S = '(' + S + ')';
|
|
|
|
getPointeeType().getAsStringInternal(S, Policy);
|
|
}
|
|
|
|
void RValueReferenceType::getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const {
|
|
S = "&&" + S;
|
|
|
|
// Handle things like 'int (&&A)[4];' correctly.
|
|
// FIXME: this should include vectors, but vectors use attributes I guess.
|
|
if (isa<ArrayType>(getPointeeType()))
|
|
S = '(' + S + ')';
|
|
|
|
getPointeeType().getAsStringInternal(S, Policy);
|
|
}
|
|
|
|
void MemberPointerType::getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const {
|
|
std::string C;
|
|
Class->getAsStringInternal(C, Policy);
|
|
C += "::*";
|
|
S = C + S;
|
|
|
|
// Handle things like 'int (Cls::*A)[4];' correctly.
|
|
// FIXME: this should include vectors, but vectors use attributes I guess.
|
|
if (isa<ArrayType>(getPointeeType()))
|
|
S = '(' + S + ')';
|
|
|
|
getPointeeType().getAsStringInternal(S, Policy);
|
|
}
|
|
|
|
void ConstantArrayType::getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const {
|
|
S += '[';
|
|
S += llvm::utostr(getSize().getZExtValue());
|
|
S += ']';
|
|
|
|
getElementType().getAsStringInternal(S, Policy);
|
|
}
|
|
|
|
void IncompleteArrayType::getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const {
|
|
S += "[]";
|
|
|
|
getElementType().getAsStringInternal(S, Policy);
|
|
}
|
|
|
|
void VariableArrayType::getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const {
|
|
S += '[';
|
|
|
|
if (getIndexTypeQualifier()) {
|
|
AppendTypeQualList(S, getIndexTypeQualifier());
|
|
S += ' ';
|
|
}
|
|
|
|
if (getSizeModifier() == Static)
|
|
S += "static";
|
|
else if (getSizeModifier() == Star)
|
|
S += '*';
|
|
|
|
if (getSizeExpr()) {
|
|
std::string SStr;
|
|
llvm::raw_string_ostream s(SStr);
|
|
getSizeExpr()->printPretty(s, 0, Policy);
|
|
S += s.str();
|
|
}
|
|
S += ']';
|
|
|
|
getElementType().getAsStringInternal(S, Policy);
|
|
}
|
|
|
|
void DependentSizedArrayType::getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const {
|
|
S += '[';
|
|
|
|
if (getIndexTypeQualifier()) {
|
|
AppendTypeQualList(S, getIndexTypeQualifier());
|
|
S += ' ';
|
|
}
|
|
|
|
if (getSizeModifier() == Static)
|
|
S += "static";
|
|
else if (getSizeModifier() == Star)
|
|
S += '*';
|
|
|
|
if (getSizeExpr()) {
|
|
std::string SStr;
|
|
llvm::raw_string_ostream s(SStr);
|
|
getSizeExpr()->printPretty(s, 0, Policy);
|
|
S += s.str();
|
|
}
|
|
S += ']';
|
|
|
|
getElementType().getAsStringInternal(S, Policy);
|
|
}
|
|
|
|
void DependentSizedExtVectorType::getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const {
|
|
getElementType().getAsStringInternal(S, Policy);
|
|
|
|
S += " __attribute__((ext_vector_type(";
|
|
if (getSizeExpr()) {
|
|
std::string SStr;
|
|
llvm::raw_string_ostream s(SStr);
|
|
getSizeExpr()->printPretty(s, 0, Policy);
|
|
S += s.str();
|
|
}
|
|
S += ")))";
|
|
}
|
|
|
|
void VectorType::getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const {
|
|
// FIXME: We prefer to print the size directly here, but have no way
|
|
// to get the size of the type.
|
|
S += " __attribute__((__vector_size__(";
|
|
S += llvm::utostr_32(NumElements); // convert back to bytes.
|
|
S += " * sizeof(" + ElementType.getAsString() + "))))";
|
|
ElementType.getAsStringInternal(S, Policy);
|
|
}
|
|
|
|
void ExtVectorType::getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const {
|
|
S += " __attribute__((ext_vector_type(";
|
|
S += llvm::utostr_32(NumElements);
|
|
S += ")))";
|
|
ElementType.getAsStringInternal(S, Policy);
|
|
}
|
|
|
|
void TypeOfExprType::getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const {
|
|
if (!InnerString.empty()) // Prefix the basic type, e.g. 'typeof(e) X'.
|
|
InnerString = ' ' + InnerString;
|
|
std::string Str;
|
|
llvm::raw_string_ostream s(Str);
|
|
getUnderlyingExpr()->printPretty(s, 0, Policy);
|
|
InnerString = "typeof " + s.str() + InnerString;
|
|
}
|
|
|
|
void TypeOfType::getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const {
|
|
if (!InnerString.empty()) // Prefix the basic type, e.g. 'typeof(t) X'.
|
|
InnerString = ' ' + InnerString;
|
|
std::string Tmp;
|
|
getUnderlyingType().getAsStringInternal(Tmp, Policy);
|
|
InnerString = "typeof(" + Tmp + ")" + InnerString;
|
|
}
|
|
|
|
void DecltypeType::getAsStringInternal(std::string &InnerString,
|
|
const PrintingPolicy &Policy) const {
|
|
if (!InnerString.empty()) // Prefix the basic type, e.g. 'decltype(t) X'.
|
|
InnerString = ' ' + InnerString;
|
|
std::string Str;
|
|
llvm::raw_string_ostream s(Str);
|
|
getUnderlyingExpr()->printPretty(s, 0, Policy);
|
|
InnerString = "decltype(" + s.str() + ")" + InnerString;
|
|
}
|
|
|
|
void FunctionNoProtoType::getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const {
|
|
// If needed for precedence reasons, wrap the inner part in grouping parens.
|
|
if (!S.empty())
|
|
S = "(" + S + ")";
|
|
|
|
S += "()";
|
|
getResultType().getAsStringInternal(S, Policy);
|
|
}
|
|
|
|
void FunctionProtoType::getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const {
|
|
// If needed for precedence reasons, wrap the inner part in grouping parens.
|
|
if (!S.empty())
|
|
S = "(" + S + ")";
|
|
|
|
S += "(";
|
|
std::string Tmp;
|
|
PrintingPolicy ParamPolicy(Policy);
|
|
ParamPolicy.SuppressSpecifiers = false;
|
|
for (unsigned i = 0, e = getNumArgs(); i != e; ++i) {
|
|
if (i) S += ", ";
|
|
getArgType(i).getAsStringInternal(Tmp, ParamPolicy);
|
|
S += Tmp;
|
|
Tmp.clear();
|
|
}
|
|
|
|
if (isVariadic()) {
|
|
if (getNumArgs())
|
|
S += ", ";
|
|
S += "...";
|
|
} else if (getNumArgs() == 0 && !Policy.CPlusPlus) {
|
|
// Do not emit int() if we have a proto, emit 'int(void)'.
|
|
S += "void";
|
|
}
|
|
|
|
S += ")";
|
|
getResultType().getAsStringInternal(S, Policy);
|
|
}
|
|
|
|
|
|
void TypedefType::getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const {
|
|
if (!InnerString.empty()) // Prefix the basic type, e.g. 'typedefname X'.
|
|
InnerString = ' ' + InnerString;
|
|
InnerString = getDecl()->getIdentifier()->getName() + InnerString;
|
|
}
|
|
|
|
void TemplateTypeParmType::getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const {
|
|
if (!InnerString.empty()) // Prefix the basic type, e.g. 'parmname X'.
|
|
InnerString = ' ' + InnerString;
|
|
|
|
if (!Name)
|
|
InnerString = "type-parameter-" + llvm::utostr_32(Depth) + '-' +
|
|
llvm::utostr_32(Index) + InnerString;
|
|
else
|
|
InnerString = Name->getName() + InnerString;
|
|
}
|
|
|
|
std::string
|
|
TemplateSpecializationType::PrintTemplateArgumentList(
|
|
const TemplateArgument *Args,
|
|
unsigned NumArgs,
|
|
const PrintingPolicy &Policy) {
|
|
std::string SpecString;
|
|
SpecString += '<';
|
|
for (unsigned Arg = 0; Arg < NumArgs; ++Arg) {
|
|
if (Arg)
|
|
SpecString += ", ";
|
|
|
|
// Print the argument into a string.
|
|
std::string ArgString;
|
|
switch (Args[Arg].getKind()) {
|
|
case TemplateArgument::Null:
|
|
assert(false && "Null template argument");
|
|
break;
|
|
|
|
case TemplateArgument::Type:
|
|
Args[Arg].getAsType().getAsStringInternal(ArgString, Policy);
|
|
break;
|
|
|
|
case TemplateArgument::Declaration:
|
|
ArgString = cast<NamedDecl>(Args[Arg].getAsDecl())->getNameAsString();
|
|
break;
|
|
|
|
case TemplateArgument::Integral:
|
|
ArgString = Args[Arg].getAsIntegral()->toString(10, true);
|
|
break;
|
|
|
|
case TemplateArgument::Expression: {
|
|
llvm::raw_string_ostream s(ArgString);
|
|
Args[Arg].getAsExpr()->printPretty(s, 0, Policy);
|
|
break;
|
|
}
|
|
case TemplateArgument::Pack:
|
|
assert(0 && "FIXME: Implement!");
|
|
break;
|
|
}
|
|
|
|
// If this is the first argument and its string representation
|
|
// begins with the global scope specifier ('::foo'), add a space
|
|
// to avoid printing the diagraph '<:'.
|
|
if (!Arg && !ArgString.empty() && ArgString[0] == ':')
|
|
SpecString += ' ';
|
|
|
|
SpecString += ArgString;
|
|
}
|
|
|
|
// If the last character of our string is '>', add another space to
|
|
// keep the two '>''s separate tokens. We don't *have* to do this in
|
|
// C++0x, but it's still good hygiene.
|
|
if (SpecString[SpecString.size() - 1] == '>')
|
|
SpecString += ' ';
|
|
|
|
SpecString += '>';
|
|
|
|
return SpecString;
|
|
}
|
|
|
|
void
|
|
TemplateSpecializationType::
|
|
getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const {
|
|
std::string SpecString;
|
|
|
|
{
|
|
llvm::raw_string_ostream OS(SpecString);
|
|
Template.print(OS, Policy);
|
|
}
|
|
|
|
SpecString += PrintTemplateArgumentList(getArgs(), getNumArgs(), Policy);
|
|
if (InnerString.empty())
|
|
InnerString.swap(SpecString);
|
|
else
|
|
InnerString = SpecString + ' ' + InnerString;
|
|
}
|
|
|
|
void QualifiedNameType::getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const {
|
|
std::string MyString;
|
|
|
|
{
|
|
llvm::raw_string_ostream OS(MyString);
|
|
NNS->print(OS, Policy);
|
|
}
|
|
|
|
std::string TypeStr;
|
|
PrintingPolicy InnerPolicy(Policy);
|
|
InnerPolicy.SuppressTagKind = true;
|
|
NamedType.getAsStringInternal(TypeStr, InnerPolicy);
|
|
|
|
MyString += TypeStr;
|
|
if (InnerString.empty())
|
|
InnerString.swap(MyString);
|
|
else
|
|
InnerString = MyString + ' ' + InnerString;
|
|
}
|
|
|
|
void TypenameType::getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const {
|
|
std::string MyString;
|
|
|
|
{
|
|
llvm::raw_string_ostream OS(MyString);
|
|
OS << "typename ";
|
|
NNS->print(OS, Policy);
|
|
|
|
if (const IdentifierInfo *Ident = getIdentifier())
|
|
OS << Ident->getName();
|
|
else if (const TemplateSpecializationType *Spec = getTemplateId()) {
|
|
Spec->getTemplateName().print(OS, Policy, true);
|
|
OS << TemplateSpecializationType::PrintTemplateArgumentList(
|
|
Spec->getArgs(),
|
|
Spec->getNumArgs(),
|
|
Policy);
|
|
}
|
|
}
|
|
|
|
if (InnerString.empty())
|
|
InnerString.swap(MyString);
|
|
else
|
|
InnerString = MyString + ' ' + InnerString;
|
|
}
|
|
|
|
void ObjCInterfaceType::getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const {
|
|
if (!InnerString.empty()) // Prefix the basic type, e.g. 'typedefname X'.
|
|
InnerString = ' ' + InnerString;
|
|
InnerString = getDecl()->getIdentifier()->getName() + InnerString;
|
|
}
|
|
|
|
void ObjCObjectPointerType::getAsStringInternal(std::string &InnerString,
|
|
const PrintingPolicy &Policy) const {
|
|
if (!InnerString.empty()) // Prefix the basic type, e.g. 'typedefname X'.
|
|
InnerString = ' ' + InnerString;
|
|
|
|
std::string ObjCQIString;
|
|
|
|
if (getDecl())
|
|
ObjCQIString = getDecl()->getNameAsString();
|
|
else
|
|
ObjCQIString = "id";
|
|
|
|
if (!qual_empty()) {
|
|
ObjCQIString += '<';
|
|
for (qual_iterator I = qual_begin(), E = qual_end(); I != E; ++I) {
|
|
ObjCQIString += (*I)->getNameAsString();
|
|
if (I+1 != E)
|
|
ObjCQIString += ',';
|
|
}
|
|
ObjCQIString += '>';
|
|
}
|
|
InnerString = ObjCQIString + InnerString;
|
|
}
|
|
|
|
void
|
|
ObjCQualifiedInterfaceType::getAsStringInternal(std::string &InnerString,
|
|
const PrintingPolicy &Policy) const {
|
|
if (!InnerString.empty()) // Prefix the basic type, e.g. 'typedefname X'.
|
|
InnerString = ' ' + InnerString;
|
|
std::string ObjCQIString = getDecl()->getNameAsString();
|
|
ObjCQIString += '<';
|
|
bool isFirst = true;
|
|
for (qual_iterator I = qual_begin(), E = qual_end(); I != E; ++I) {
|
|
if (isFirst)
|
|
isFirst = false;
|
|
else
|
|
ObjCQIString += ',';
|
|
ObjCQIString += (*I)->getNameAsString();
|
|
}
|
|
ObjCQIString += '>';
|
|
InnerString = ObjCQIString + InnerString;
|
|
}
|
|
|
|
void TagType::getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const {
|
|
if (Policy.SuppressTag)
|
|
return;
|
|
|
|
if (!InnerString.empty()) // Prefix the basic type, e.g. 'typedefname X'.
|
|
InnerString = ' ' + InnerString;
|
|
|
|
const char *Kind = Policy.SuppressTagKind? 0 : getDecl()->getKindName();
|
|
const char *ID;
|
|
if (const IdentifierInfo *II = getDecl()->getIdentifier())
|
|
ID = II->getName();
|
|
else if (TypedefDecl *Typedef = getDecl()->getTypedefForAnonDecl()) {
|
|
Kind = 0;
|
|
assert(Typedef->getIdentifier() && "Typedef without identifier?");
|
|
ID = Typedef->getIdentifier()->getName();
|
|
} else
|
|
ID = "<anonymous>";
|
|
|
|
// If this is a class template specialization, print the template
|
|
// arguments.
|
|
if (ClassTemplateSpecializationDecl *Spec
|
|
= dyn_cast<ClassTemplateSpecializationDecl>(getDecl())) {
|
|
const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
|
|
std::string TemplateArgsStr
|
|
= TemplateSpecializationType::PrintTemplateArgumentList(
|
|
TemplateArgs.getFlatArgumentList(),
|
|
TemplateArgs.flat_size(),
|
|
Policy);
|
|
InnerString = TemplateArgsStr + InnerString;
|
|
}
|
|
|
|
if (Kind) {
|
|
// Compute the full nested-name-specifier for this type. In C,
|
|
// this will always be empty.
|
|
std::string ContextStr;
|
|
for (DeclContext *DC = getDecl()->getDeclContext();
|
|
!DC->isTranslationUnit(); DC = DC->getParent()) {
|
|
std::string MyPart;
|
|
if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(DC)) {
|
|
if (NS->getIdentifier())
|
|
MyPart = NS->getNameAsString();
|
|
} else if (ClassTemplateSpecializationDecl *Spec
|
|
= dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
|
|
const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
|
|
std::string TemplateArgsStr
|
|
= TemplateSpecializationType::PrintTemplateArgumentList(
|
|
TemplateArgs.getFlatArgumentList(),
|
|
TemplateArgs.flat_size(),
|
|
Policy);
|
|
MyPart = Spec->getIdentifier()->getName() + TemplateArgsStr;
|
|
} else if (TagDecl *Tag = dyn_cast<TagDecl>(DC)) {
|
|
if (TypedefDecl *Typedef = Tag->getTypedefForAnonDecl())
|
|
MyPart = Typedef->getIdentifier()->getName();
|
|
else if (Tag->getIdentifier())
|
|
MyPart = Tag->getIdentifier()->getName();
|
|
}
|
|
|
|
if (!MyPart.empty())
|
|
ContextStr = MyPart + "::" + ContextStr;
|
|
}
|
|
|
|
InnerString = std::string(Kind) + " " + ContextStr + ID + InnerString;
|
|
} else
|
|
InnerString = ID + InnerString;
|
|
}
|