mirror of
https://github.com/opnsense/src.git
synced 2026-02-20 00:11:07 -05:00
794 lines
22 KiB
C
794 lines
22 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*
|
|
* Copyright (c) 2013 EMC Corp.
|
|
* Copyright (c) 2011 Jeffrey Roberson <jeff@freebsd.org>
|
|
* Copyright (c) 2008 Mayur Shardul <mayur.shardul@gmail.com>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
*/
|
|
|
|
/*
|
|
* Path-compressed radix trie implementation.
|
|
* The following code is not generalized into a general purpose library
|
|
* because there are way too many parameters embedded that should really
|
|
* be decided by the library consumers. At the same time, consumers
|
|
* of this code must achieve highest possible performance.
|
|
*
|
|
* The implementation takes into account the following rationale:
|
|
* - Size of the nodes should be as small as possible but still big enough
|
|
* to avoid a large maximum depth for the trie. This is a balance
|
|
* between the necessity to not wire too much physical memory for the nodes
|
|
* and the necessity to avoid too much cache pollution during the trie
|
|
* operations.
|
|
* - There is not a huge bias toward the number of lookup operations over
|
|
* the number of insert and remove operations. This basically implies
|
|
* that optimizations supposedly helping one operation but hurting the
|
|
* other might be carefully evaluated.
|
|
* - On average not many nodes are expected to be fully populated, hence
|
|
* level compression may just complicate things.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
#include "opt_ddb.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/libkern.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/vmmeter.h>
|
|
#include <sys/smr.h>
|
|
#include <sys/smr_types.h>
|
|
|
|
#include <vm/uma.h>
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_param.h>
|
|
#include <vm/vm_object.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/vm_radix.h>
|
|
|
|
#ifdef DDB
|
|
#include <ddb/ddb.h>
|
|
#endif
|
|
|
|
/*
|
|
* These widths should allow the pointers to a node's children to fit within
|
|
* a single cache line. The extra levels from a narrow width should not be
|
|
* a problem thanks to path compression.
|
|
*/
|
|
#ifdef __LP64__
|
|
#define VM_RADIX_WIDTH 4
|
|
#else
|
|
#define VM_RADIX_WIDTH 3
|
|
#endif
|
|
|
|
#define VM_RADIX_COUNT (1 << VM_RADIX_WIDTH)
|
|
#define VM_RADIX_MASK (VM_RADIX_COUNT - 1)
|
|
#define VM_RADIX_LIMIT \
|
|
(howmany(sizeof(vm_pindex_t) * NBBY, VM_RADIX_WIDTH) - 1)
|
|
|
|
#if VM_RADIX_WIDTH == 3
|
|
typedef uint8_t rn_popmap_t;
|
|
#elif VM_RADIX_WIDTH == 4
|
|
typedef uint16_t rn_popmap_t;
|
|
#elif VM_RADIX_WIDTH == 5
|
|
typedef uint32_t rn_popmap_t;
|
|
#else
|
|
#error Unsupported width
|
|
#endif
|
|
_Static_assert(sizeof(rn_popmap_t) <= sizeof(int),
|
|
"rn_popmap_t too wide");
|
|
|
|
/* Set of all flag bits stored in node pointers. */
|
|
#define VM_RADIX_FLAGS (VM_RADIX_ISLEAF)
|
|
#define VM_RADIX_PAD VM_RADIX_FLAGS
|
|
|
|
enum vm_radix_access { SMR, LOCKED, UNSERIALIZED };
|
|
|
|
struct vm_radix_node;
|
|
typedef SMR_POINTER(struct vm_radix_node *) smrnode_t;
|
|
|
|
struct vm_radix_node {
|
|
vm_pindex_t rn_owner; /* Owner of record. */
|
|
rn_popmap_t rn_popmap; /* Valid children. */
|
|
uint8_t rn_clev; /* Level * WIDTH. */
|
|
smrnode_t rn_child[VM_RADIX_COUNT]; /* Child nodes. */
|
|
};
|
|
|
|
static uma_zone_t vm_radix_node_zone;
|
|
static smr_t vm_radix_smr;
|
|
|
|
static void vm_radix_node_store(smrnode_t *p, struct vm_radix_node *v,
|
|
enum vm_radix_access access);
|
|
|
|
/*
|
|
* Map index to an array position for the children of rnode,
|
|
*/
|
|
static __inline int
|
|
vm_radix_slot(struct vm_radix_node *rnode, vm_pindex_t index)
|
|
{
|
|
return ((index >> rnode->rn_clev) & VM_RADIX_MASK);
|
|
}
|
|
|
|
/*
|
|
* Returns true if index does not belong to the specified rnode. Otherwise,
|
|
* sets slot value, and returns false.
|
|
*/
|
|
static __inline bool
|
|
vm_radix_keybarr(struct vm_radix_node *rnode, vm_pindex_t index, int *slot)
|
|
{
|
|
index = (index - rnode->rn_owner) >> rnode->rn_clev;
|
|
if (index >= VM_RADIX_COUNT)
|
|
return (true);
|
|
*slot = index;
|
|
return (false);
|
|
}
|
|
|
|
/*
|
|
* Allocate a radix node.
|
|
*/
|
|
static struct vm_radix_node *
|
|
vm_radix_node_get(vm_pindex_t index, vm_pindex_t newind)
|
|
{
|
|
struct vm_radix_node *rnode;
|
|
|
|
rnode = uma_zalloc_smr(vm_radix_node_zone, M_NOWAIT);
|
|
if (rnode == NULL)
|
|
return (NULL);
|
|
|
|
/*
|
|
* We want to clear the last child pointer after the final section
|
|
* has exited so lookup can not return false negatives. It is done
|
|
* here because it will be cache-cold in the dtor callback.
|
|
*/
|
|
if (rnode->rn_popmap != 0) {
|
|
vm_radix_node_store(&rnode->rn_child[ffs(rnode->rn_popmap) - 1],
|
|
VM_RADIX_NULL, UNSERIALIZED);
|
|
rnode->rn_popmap = 0;
|
|
}
|
|
|
|
/*
|
|
* From the highest-order bit where the indexes differ,
|
|
* compute the highest level in the trie where they differ. Then,
|
|
* compute the least index of this subtrie.
|
|
*/
|
|
KASSERT(index != newind, ("%s: passing the same key value %jx",
|
|
__func__, (uintmax_t)index));
|
|
_Static_assert(sizeof(long long) >= sizeof(vm_pindex_t),
|
|
"vm_pindex_t too wide");
|
|
_Static_assert(sizeof(vm_pindex_t) * NBBY <=
|
|
(1 << (sizeof(rnode->rn_clev) * NBBY)), "rn_clev too narrow");
|
|
rnode->rn_clev = rounddown(flsll(index ^ newind) - 1, VM_RADIX_WIDTH);
|
|
rnode->rn_owner = VM_RADIX_COUNT;
|
|
rnode->rn_owner = index & -(rnode->rn_owner << rnode->rn_clev);
|
|
return (rnode);
|
|
}
|
|
|
|
/*
|
|
* Free radix node.
|
|
*/
|
|
static __inline void
|
|
vm_radix_node_put(struct vm_radix_node *rnode)
|
|
{
|
|
#ifdef INVARIANTS
|
|
int slot;
|
|
|
|
KASSERT(powerof2(rnode->rn_popmap),
|
|
("vm_radix_node_put: rnode %p has too many children %04x", rnode,
|
|
rnode->rn_popmap));
|
|
for (slot = 0; slot < VM_RADIX_COUNT; slot++) {
|
|
if ((rnode->rn_popmap & (1 << slot)) != 0)
|
|
continue;
|
|
KASSERT(smr_unserialized_load(&rnode->rn_child[slot], true) ==
|
|
VM_RADIX_NULL,
|
|
("vm_radix_node_put: rnode %p has a child", rnode));
|
|
}
|
|
#endif
|
|
uma_zfree_smr(vm_radix_node_zone, rnode);
|
|
}
|
|
|
|
/*
|
|
* Fetch a node pointer from a slot in another node.
|
|
*/
|
|
static __inline struct vm_radix_node *
|
|
vm_radix_node_load(smrnode_t *p, enum vm_radix_access access)
|
|
{
|
|
|
|
switch (access) {
|
|
case UNSERIALIZED:
|
|
return (smr_unserialized_load(p, true));
|
|
case LOCKED:
|
|
return (smr_serialized_load(p, true));
|
|
case SMR:
|
|
return (smr_entered_load(p, vm_radix_smr));
|
|
}
|
|
__assert_unreachable();
|
|
}
|
|
|
|
static __inline void
|
|
vm_radix_node_store(smrnode_t *p, struct vm_radix_node *v,
|
|
enum vm_radix_access access)
|
|
{
|
|
|
|
switch (access) {
|
|
case UNSERIALIZED:
|
|
smr_unserialized_store(p, v, true);
|
|
break;
|
|
case LOCKED:
|
|
smr_serialized_store(p, v, true);
|
|
break;
|
|
case SMR:
|
|
panic("vm_radix_node_store: Not supported in smr section.");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Get the root node for a radix tree.
|
|
*/
|
|
static __inline struct vm_radix_node *
|
|
vm_radix_root_load(struct vm_radix *rtree, enum vm_radix_access access)
|
|
{
|
|
|
|
return (vm_radix_node_load((smrnode_t *)&rtree->rt_root, access));
|
|
}
|
|
|
|
/*
|
|
* Set the root node for a radix tree.
|
|
*/
|
|
static __inline void
|
|
vm_radix_root_store(struct vm_radix *rtree, struct vm_radix_node *rnode,
|
|
enum vm_radix_access access)
|
|
{
|
|
|
|
vm_radix_node_store((smrnode_t *)&rtree->rt_root, rnode, access);
|
|
}
|
|
|
|
/*
|
|
* Returns TRUE if the specified radix node is a leaf and FALSE otherwise.
|
|
*/
|
|
static __inline bool
|
|
vm_radix_isleaf(struct vm_radix_node *rnode)
|
|
{
|
|
|
|
return (((uintptr_t)rnode & VM_RADIX_ISLEAF) != 0);
|
|
}
|
|
|
|
/*
|
|
* Returns page cast to radix node with leaf bit set.
|
|
*/
|
|
static __inline struct vm_radix_node *
|
|
vm_radix_toleaf(vm_page_t page)
|
|
{
|
|
return ((struct vm_radix_node *)((uintptr_t)page | VM_RADIX_ISLEAF));
|
|
}
|
|
|
|
/*
|
|
* Returns the associated page extracted from rnode.
|
|
*/
|
|
static __inline vm_page_t
|
|
vm_radix_topage(struct vm_radix_node *rnode)
|
|
{
|
|
|
|
return ((vm_page_t)((uintptr_t)rnode & ~VM_RADIX_FLAGS));
|
|
}
|
|
|
|
/*
|
|
* Make 'child' a child of 'rnode'.
|
|
*/
|
|
static __inline void
|
|
vm_radix_addnode(struct vm_radix_node *rnode, vm_pindex_t index,
|
|
struct vm_radix_node *child, enum vm_radix_access access)
|
|
{
|
|
int slot;
|
|
|
|
slot = vm_radix_slot(rnode, index);
|
|
vm_radix_node_store(&rnode->rn_child[slot], child, access);
|
|
rnode->rn_popmap ^= 1 << slot;
|
|
KASSERT((rnode->rn_popmap & (1 << slot)) != 0,
|
|
("%s: bad popmap slot %d in rnode %p", __func__, slot, rnode));
|
|
}
|
|
|
|
/*
|
|
* Internal helper for vm_radix_reclaim_allnodes().
|
|
* This function is recursive.
|
|
*/
|
|
static void
|
|
vm_radix_reclaim_allnodes_int(struct vm_radix_node *rnode)
|
|
{
|
|
struct vm_radix_node *child;
|
|
int slot;
|
|
|
|
while (rnode->rn_popmap != 0) {
|
|
slot = ffs(rnode->rn_popmap) - 1;
|
|
child = vm_radix_node_load(&rnode->rn_child[slot],
|
|
UNSERIALIZED);
|
|
KASSERT(child != VM_RADIX_NULL,
|
|
("%s: bad popmap slot %d in rnode %p",
|
|
__func__, slot, rnode));
|
|
if (!vm_radix_isleaf(child))
|
|
vm_radix_reclaim_allnodes_int(child);
|
|
rnode->rn_popmap ^= 1 << slot;
|
|
vm_radix_node_store(&rnode->rn_child[slot], VM_RADIX_NULL,
|
|
UNSERIALIZED);
|
|
}
|
|
vm_radix_node_put(rnode);
|
|
}
|
|
|
|
/*
|
|
* radix node zone initializer.
|
|
*/
|
|
static int
|
|
vm_radix_zone_init(void *mem, int size, int flags)
|
|
{
|
|
struct vm_radix_node *rnode;
|
|
|
|
rnode = mem;
|
|
rnode->rn_popmap = 0;
|
|
for (int i = 0; i < nitems(rnode->rn_child); i++)
|
|
vm_radix_node_store(&rnode->rn_child[i], VM_RADIX_NULL,
|
|
UNSERIALIZED);
|
|
return (0);
|
|
}
|
|
|
|
#ifndef UMA_MD_SMALL_ALLOC
|
|
void vm_radix_reserve_kva(void);
|
|
/*
|
|
* Reserve the KVA necessary to satisfy the node allocation.
|
|
* This is mandatory in architectures not supporting direct
|
|
* mapping as they will need otherwise to carve into the kernel maps for
|
|
* every node allocation, resulting into deadlocks for consumers already
|
|
* working with kernel maps.
|
|
*/
|
|
void
|
|
vm_radix_reserve_kva(void)
|
|
{
|
|
|
|
/*
|
|
* Calculate the number of reserved nodes, discounting the pages that
|
|
* are needed to store them.
|
|
*/
|
|
if (!uma_zone_reserve_kva(vm_radix_node_zone,
|
|
((vm_paddr_t)vm_cnt.v_page_count * PAGE_SIZE) / (PAGE_SIZE +
|
|
sizeof(struct vm_radix_node))))
|
|
panic("%s: unable to reserve KVA", __func__);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Initialize the UMA slab zone.
|
|
*/
|
|
void
|
|
vm_radix_zinit(void)
|
|
{
|
|
|
|
vm_radix_node_zone = uma_zcreate("RADIX NODE",
|
|
sizeof(struct vm_radix_node), NULL, NULL, vm_radix_zone_init, NULL,
|
|
VM_RADIX_PAD, UMA_ZONE_VM | UMA_ZONE_SMR);
|
|
vm_radix_smr = uma_zone_get_smr(vm_radix_node_zone);
|
|
}
|
|
|
|
/*
|
|
* Inserts the key-value pair into the trie.
|
|
* Panics if the key already exists.
|
|
*/
|
|
int
|
|
vm_radix_insert(struct vm_radix *rtree, vm_page_t page)
|
|
{
|
|
vm_pindex_t index, newind;
|
|
struct vm_radix_node *leaf, *parent, *rnode;
|
|
smrnode_t *parentp;
|
|
int slot;
|
|
|
|
index = page->pindex;
|
|
leaf = vm_radix_toleaf(page);
|
|
|
|
/*
|
|
* The owner of record for root is not really important because it
|
|
* will never be used.
|
|
*/
|
|
rnode = vm_radix_root_load(rtree, LOCKED);
|
|
parent = NULL;
|
|
for (;;) {
|
|
if (vm_radix_isleaf(rnode)) {
|
|
if (rnode == VM_RADIX_NULL) {
|
|
if (parent == NULL)
|
|
rtree->rt_root = leaf;
|
|
else
|
|
vm_radix_addnode(parent, index, leaf,
|
|
LOCKED);
|
|
return (0);
|
|
}
|
|
newind = vm_radix_topage(rnode)->pindex;
|
|
if (newind == index)
|
|
panic("%s: key %jx is already present",
|
|
__func__, (uintmax_t)index);
|
|
break;
|
|
}
|
|
if (vm_radix_keybarr(rnode, index, &slot)) {
|
|
newind = rnode->rn_owner;
|
|
break;
|
|
}
|
|
parent = rnode;
|
|
rnode = vm_radix_node_load(&rnode->rn_child[slot], LOCKED);
|
|
}
|
|
|
|
/*
|
|
* A new node is needed because the right insertion level is reached.
|
|
* Setup the new intermediate node and add the 2 children: the
|
|
* new object and the older edge or object.
|
|
*/
|
|
parentp = (parent != NULL) ? &parent->rn_child[slot]:
|
|
(smrnode_t *)&rtree->rt_root;
|
|
parent = vm_radix_node_get(index, newind);
|
|
if (parent == NULL)
|
|
return (ENOMEM);
|
|
/* These writes are not yet visible due to ordering. */
|
|
vm_radix_addnode(parent, index, leaf, UNSERIALIZED);
|
|
vm_radix_addnode(parent, newind, rnode, UNSERIALIZED);
|
|
/* Serializing write to make the above visible. */
|
|
vm_radix_node_store(parentp, parent, LOCKED);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Returns the value stored at the index. If the index is not present,
|
|
* NULL is returned.
|
|
*/
|
|
static __always_inline vm_page_t
|
|
_vm_radix_lookup(struct vm_radix *rtree, vm_pindex_t index,
|
|
enum vm_radix_access access)
|
|
{
|
|
struct vm_radix_node *rnode;
|
|
vm_page_t m;
|
|
int slot;
|
|
|
|
rnode = vm_radix_root_load(rtree, access);
|
|
for (;;) {
|
|
if (vm_radix_isleaf(rnode)) {
|
|
if ((m = vm_radix_topage(rnode)) != NULL &&
|
|
m->pindex == index)
|
|
return (m);
|
|
break;
|
|
}
|
|
if (vm_radix_keybarr(rnode, index, &slot))
|
|
break;
|
|
rnode = vm_radix_node_load(&rnode->rn_child[slot], access);
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Returns the value stored at the index assuming there is an external lock.
|
|
*
|
|
* If the index is not present, NULL is returned.
|
|
*/
|
|
vm_page_t
|
|
vm_radix_lookup(struct vm_radix *rtree, vm_pindex_t index)
|
|
{
|
|
|
|
return _vm_radix_lookup(rtree, index, LOCKED);
|
|
}
|
|
|
|
/*
|
|
* Returns the value stored at the index without requiring an external lock.
|
|
*
|
|
* If the index is not present, NULL is returned.
|
|
*/
|
|
vm_page_t
|
|
vm_radix_lookup_unlocked(struct vm_radix *rtree, vm_pindex_t index)
|
|
{
|
|
vm_page_t m;
|
|
|
|
smr_enter(vm_radix_smr);
|
|
m = _vm_radix_lookup(rtree, index, SMR);
|
|
smr_exit(vm_radix_smr);
|
|
|
|
return (m);
|
|
}
|
|
|
|
/*
|
|
* Returns the page with the least pindex that is greater than or equal to the
|
|
* specified pindex, or NULL if there are no such pages.
|
|
*
|
|
* Requires that access be externally synchronized by a lock.
|
|
*/
|
|
vm_page_t
|
|
vm_radix_lookup_ge(struct vm_radix *rtree, vm_pindex_t index)
|
|
{
|
|
struct vm_radix_node *rnode, *succ;
|
|
vm_page_t m;
|
|
int slot;
|
|
|
|
/*
|
|
* Descend the trie as if performing an ordinary lookup for the page
|
|
* with the specified pindex. However, unlike an ordinary lookup, as we
|
|
* descend the trie, we use "succ" to remember the last branching-off
|
|
* point, that is, the interior node under which the page with the least
|
|
* pindex that is both outside our current path down the trie and more
|
|
* than the specified pindex resides. (The node's popmap makes it fast
|
|
* and easy to recognize a branching-off point.) If our ordinary lookup
|
|
* fails to yield a page with a pindex that is greater than or equal to
|
|
* the specified pindex, then we will exit this loop and perform a
|
|
* lookup starting from "succ". If "succ" is not NULL, then that lookup
|
|
* is guaranteed to succeed.
|
|
*/
|
|
rnode = vm_radix_root_load(rtree, LOCKED);
|
|
succ = NULL;
|
|
for (;;) {
|
|
if (vm_radix_isleaf(rnode)) {
|
|
if ((m = vm_radix_topage(rnode)) != NULL &&
|
|
m->pindex >= index)
|
|
return (m);
|
|
break;
|
|
}
|
|
if (vm_radix_keybarr(rnode, index, &slot)) {
|
|
/*
|
|
* If all pages in this subtree have pindex > index,
|
|
* then the page in this subtree with the least pindex
|
|
* is the answer.
|
|
*/
|
|
if (rnode->rn_owner > index)
|
|
succ = rnode;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Just in case the next search step leads to a subtree of all
|
|
* pages with pindex < index, check popmap to see if a next
|
|
* bigger step, to a subtree of all pages with pindex > index,
|
|
* is available. If so, remember to restart the search here.
|
|
*/
|
|
if ((rnode->rn_popmap >> slot) > 1)
|
|
succ = rnode;
|
|
rnode = vm_radix_node_load(&rnode->rn_child[slot], LOCKED);
|
|
}
|
|
|
|
/*
|
|
* Restart the search from the last place visited in the subtree that
|
|
* included some pages with pindex > index, if there was such a place.
|
|
*/
|
|
if (succ == NULL)
|
|
return (NULL);
|
|
if (succ != rnode) {
|
|
/*
|
|
* Take a step to the next bigger sibling of the node chosen
|
|
* last time. In that subtree, all pages have pindex > index.
|
|
*/
|
|
slot = vm_radix_slot(succ, index) + 1;
|
|
KASSERT((succ->rn_popmap >> slot) != 0,
|
|
("%s: no popmap siblings past slot %d in node %p",
|
|
__func__, slot, succ));
|
|
slot += ffs(succ->rn_popmap >> slot) - 1;
|
|
succ = vm_radix_node_load(&succ->rn_child[slot], LOCKED);
|
|
}
|
|
|
|
/*
|
|
* Find the page in the subtree rooted at "succ" with the least pindex.
|
|
*/
|
|
while (!vm_radix_isleaf(succ)) {
|
|
KASSERT(succ->rn_popmap != 0,
|
|
("%s: no popmap children in node %p", __func__, succ));
|
|
slot = ffs(succ->rn_popmap) - 1;
|
|
succ = vm_radix_node_load(&succ->rn_child[slot], LOCKED);
|
|
}
|
|
return (vm_radix_topage(succ));
|
|
}
|
|
|
|
/*
|
|
* Returns the page with the greatest pindex that is less than or equal to the
|
|
* specified pindex, or NULL if there are no such pages.
|
|
*
|
|
* Requires that access be externally synchronized by a lock.
|
|
*/
|
|
vm_page_t
|
|
vm_radix_lookup_le(struct vm_radix *rtree, vm_pindex_t index)
|
|
{
|
|
struct vm_radix_node *pred, *rnode;
|
|
vm_page_t m;
|
|
int slot;
|
|
|
|
/*
|
|
* Mirror the implementation of vm_radix_lookup_ge, described above.
|
|
*/
|
|
rnode = vm_radix_root_load(rtree, LOCKED);
|
|
pred = NULL;
|
|
for (;;) {
|
|
if (vm_radix_isleaf(rnode)) {
|
|
if ((m = vm_radix_topage(rnode)) != NULL &&
|
|
m->pindex <= index)
|
|
return (m);
|
|
break;
|
|
}
|
|
if (vm_radix_keybarr(rnode, index, &slot)) {
|
|
if (rnode->rn_owner < index)
|
|
pred = rnode;
|
|
break;
|
|
}
|
|
if ((rnode->rn_popmap & ((1 << slot) - 1)) != 0)
|
|
pred = rnode;
|
|
rnode = vm_radix_node_load(&rnode->rn_child[slot], LOCKED);
|
|
}
|
|
if (pred == NULL)
|
|
return (NULL);
|
|
if (pred != rnode) {
|
|
slot = vm_radix_slot(pred, index);
|
|
KASSERT((pred->rn_popmap & ((1 << slot) - 1)) != 0,
|
|
("%s: no popmap siblings before slot %d in node %p",
|
|
__func__, slot, pred));
|
|
slot = fls(pred->rn_popmap & ((1 << slot) - 1)) - 1;
|
|
pred = vm_radix_node_load(&pred->rn_child[slot], LOCKED);
|
|
}
|
|
while (!vm_radix_isleaf(pred)) {
|
|
KASSERT(pred->rn_popmap != 0,
|
|
("%s: no popmap children in node %p", __func__, pred));
|
|
slot = fls(pred->rn_popmap) - 1;
|
|
pred = vm_radix_node_load(&pred->rn_child[slot], LOCKED);
|
|
}
|
|
return (vm_radix_topage(pred));
|
|
}
|
|
|
|
/*
|
|
* Remove the specified index from the trie, and return the value stored at
|
|
* that index. If the index is not present, return NULL.
|
|
*/
|
|
vm_page_t
|
|
vm_radix_remove(struct vm_radix *rtree, vm_pindex_t index)
|
|
{
|
|
struct vm_radix_node *child, *parent, *rnode;
|
|
vm_page_t m;
|
|
int slot;
|
|
|
|
rnode = NULL;
|
|
child = vm_radix_root_load(rtree, LOCKED);
|
|
for (;;) {
|
|
if (vm_radix_isleaf(child))
|
|
break;
|
|
parent = rnode;
|
|
rnode = child;
|
|
slot = vm_radix_slot(rnode, index);
|
|
child = vm_radix_node_load(&rnode->rn_child[slot], LOCKED);
|
|
}
|
|
if ((m = vm_radix_topage(child)) == NULL || m->pindex != index)
|
|
return (NULL);
|
|
if (rnode == NULL) {
|
|
vm_radix_root_store(rtree, VM_RADIX_NULL, LOCKED);
|
|
return (m);
|
|
}
|
|
KASSERT((rnode->rn_popmap & (1 << slot)) != 0,
|
|
("%s: bad popmap slot %d in rnode %p", __func__, slot, rnode));
|
|
rnode->rn_popmap ^= 1 << slot;
|
|
vm_radix_node_store(&rnode->rn_child[slot], VM_RADIX_NULL, LOCKED);
|
|
if (!powerof2(rnode->rn_popmap))
|
|
return (m);
|
|
KASSERT(rnode->rn_popmap != 0, ("%s: bad popmap all zeroes", __func__));
|
|
slot = ffs(rnode->rn_popmap) - 1;
|
|
child = vm_radix_node_load(&rnode->rn_child[slot], LOCKED);
|
|
KASSERT(child != VM_RADIX_NULL,
|
|
("%s: bad popmap slot %d in rnode %p", __func__, slot, rnode));
|
|
if (parent == NULL)
|
|
vm_radix_root_store(rtree, child, LOCKED);
|
|
else {
|
|
slot = vm_radix_slot(parent, index);
|
|
KASSERT(rnode ==
|
|
vm_radix_node_load(&parent->rn_child[slot], LOCKED),
|
|
("%s: invalid child value", __func__));
|
|
vm_radix_node_store(&parent->rn_child[slot], child, LOCKED);
|
|
}
|
|
/*
|
|
* The child is still valid and we can not zero the
|
|
* pointer until all smr references are gone.
|
|
*/
|
|
vm_radix_node_put(rnode);
|
|
return (m);
|
|
}
|
|
|
|
/*
|
|
* Remove and free all the nodes from the radix tree.
|
|
* This function is recursive but there is a tight control on it as the
|
|
* maximum depth of the tree is fixed.
|
|
*/
|
|
void
|
|
vm_radix_reclaim_allnodes(struct vm_radix *rtree)
|
|
{
|
|
struct vm_radix_node *root;
|
|
|
|
root = vm_radix_root_load(rtree, LOCKED);
|
|
if (root == VM_RADIX_NULL)
|
|
return;
|
|
vm_radix_root_store(rtree, VM_RADIX_NULL, UNSERIALIZED);
|
|
if (!vm_radix_isleaf(root))
|
|
vm_radix_reclaim_allnodes_int(root);
|
|
}
|
|
|
|
/*
|
|
* Replace an existing page in the trie with another one.
|
|
* Panics if there is not an old page in the trie at the new page's index.
|
|
*/
|
|
vm_page_t
|
|
vm_radix_replace(struct vm_radix *rtree, vm_page_t newpage)
|
|
{
|
|
struct vm_radix_node *leaf, *parent, *rnode;
|
|
vm_page_t m;
|
|
vm_pindex_t index;
|
|
int slot;
|
|
|
|
leaf = vm_radix_toleaf(newpage);
|
|
index = newpage->pindex;
|
|
rnode = vm_radix_root_load(rtree, LOCKED);
|
|
parent = NULL;
|
|
for (;;) {
|
|
if (vm_radix_isleaf(rnode)) {
|
|
if ((m = vm_radix_topage(rnode)) != NULL &&
|
|
m->pindex == index) {
|
|
if (parent == NULL)
|
|
rtree->rt_root = leaf;
|
|
else
|
|
vm_radix_node_store(
|
|
&parent->rn_child[slot], leaf,
|
|
LOCKED);
|
|
return (m);
|
|
}
|
|
break;
|
|
}
|
|
if (vm_radix_keybarr(rnode, index, &slot))
|
|
break;
|
|
parent = rnode;
|
|
rnode = vm_radix_node_load(&rnode->rn_child[slot], LOCKED);
|
|
}
|
|
panic("%s: original replacing page not found", __func__);
|
|
}
|
|
|
|
void
|
|
vm_radix_wait(void)
|
|
{
|
|
uma_zwait(vm_radix_node_zone);
|
|
}
|
|
|
|
#ifdef DDB
|
|
/*
|
|
* Show details about the given radix node.
|
|
*/
|
|
DB_SHOW_COMMAND(radixnode, db_show_radixnode)
|
|
{
|
|
struct vm_radix_node *rnode, *tmp;
|
|
int slot;
|
|
rn_popmap_t popmap;
|
|
|
|
if (!have_addr)
|
|
return;
|
|
rnode = (struct vm_radix_node *)addr;
|
|
db_printf("radixnode %p, owner %jx, children popmap %04x, level %u:\n",
|
|
(void *)rnode, (uintmax_t)rnode->rn_owner, rnode->rn_popmap,
|
|
rnode->rn_clev / VM_RADIX_WIDTH);
|
|
for (popmap = rnode->rn_popmap; popmap != 0; popmap ^= 1 << slot) {
|
|
slot = ffs(popmap) - 1;
|
|
tmp = vm_radix_node_load(&rnode->rn_child[slot], UNSERIALIZED);
|
|
db_printf("slot: %d, val: %p, page: %p, clev: %d\n",
|
|
slot, (void *)tmp,
|
|
vm_radix_isleaf(tmp) ? vm_radix_topage(tmp) : NULL,
|
|
rnode->rn_clev / VM_RADIX_WIDTH);
|
|
}
|
|
}
|
|
#endif /* DDB */
|