the "disappearing subdisks" problem when new subdisks can't be created
due to some errors.
This is in fact an ugly hack, but a more elegant solution would probably
require a redesign of vinum in several places.
Approved by: joerg (mentor)
on the card, unmap it first. This allows it to be picked up properly when
the queue gets kicked again. This was the root problem for the lost command
(i.e. stuck in getblk/vinvalb) problem. While here, panic if commands don't
map correctly instead of just silently ignoring the problem and dropping
command. Also slow down the dynamic allocation of new commands.
It should be safe to go back into the aac waters. Thanks to everyone who
suffered through this and provided good feedback.
seems to work well in RELENG_4. However, 5.X locking foo means that I'll
have to do some quick redesign.
Add ioctl handlers for ISP_GETROLE and ISP_SETROLE ioctls.
handling of resources shortages. The driver is now so fast that it can
completely fill all 512 slots on the card, but for some reason only 511
slots are being allocated. Anything that tries to go into the 512th
slot gets silently lost. Both bugs need to be fixed at a later date,
but this should fix the reports of hangs in getblk and vinvalb.
edge cases in the loop.
- Try to grab a command before dequeueing the bio from the bioq. The old
behaviour of requeuing deferred bios to the end of the bioq is arguably
wrong. This should be fixed in the future to check the bioq head without
automatically dequeueing the bio.
aic79xx.seq:
Convert the COMPLETE_DMA_SCB list to an "stailq". This allows us to
safely keep the SCB that is currently being DMA'ed back the host on
the head of the list while processing completions off of the bus. The
newly completed SCBs are appended to the tail of the queue. In the
past, we just dequeued the SCB that was in flight from the list, but
this could result in a lost completion should the host perform certain
types of error recovery that must cancel all in-flight SCB DMA operations.
Switch from using a 16bit completion entry, holding just the tag and the
completion valid bit, to a 64bit completion entry that also contains a
"status packet valid" indicator. This solves two problems:
o The SCB DMA engine on at least Rev B. silicon does not properly deal
with a PCI disconnect that occurs at a non-64bit aligned offset in the
chips "source buffer". When the transfer is resumed, the DMA engine
continues at the correct offset, but may wrap to the head of the buffer
causing duplicate completions to be reported to the host. By using a
completion buffer in host memory that is 64bit aligned and using 64bit
completion entries, such disconnects should only occur at aligned addresses.
This assumes that the host bridge will only disconnect on cache-line
boundaries and that cache-lines are multpiles of 64bits.
o By embedding the status information in the completion entry we can avoid
an extra memory reference to the HSCB for commands that complete without
error.
Use the comparison of a "host freeze count" and a "sequencer freeze count"
to allow the host to process most SCBs that complete with non-zero status
without having to clear critical sections. Instead the host can just pause the
sequencer, performs any necessary cleanup in the waiting for selection list,
increments its freeze count on the controller, and unpauses. This is only
possible because the sequencer defers completions of SCBs with bad status
until after all pending selections have completed. The sequencer then avoids
referencing any data structures the host may touch during completion of the
SCB until the freeze counts match.
aic79xx.c:
Change the strategy for allocating our sentinal HSCB for the QINFIFO. In
the past, this allocation was tacked onto the QOUTFIFO allocation. Now that
the qoutfifo has grown to accomodate larger completion entries, the old
approach will result in a 64byte allocation that costs an extra page of
coherent memory. We now do this extra allocation via ahd_alloc_scbs()
where the "unused space" can be used to allocate "normal" HSCBs.
In our packetized busfree handler, use the ENSELO bit to differentiate
between packetized and non-packetized unexpected busfree events that
occur just after selection, but before the sequencer has had the oportunity
to service the selection.
When cleaning out the waiting for selection list, use the SCSI mode
instead of the command channel mode. The SCB pointer in the command
channel mode may be referenced by the SCB dma engine even while the
sequencer is paused, whereas the SCSI mode SCB pointer is only accessed
by the sequencer.
Print the "complete on qfreeze" sequencer SCB completion list in
ahd_dump_card_state(). This list holds all SCB completions that are deferred
until a pending select-out qfreeze event has taken effect.
aic79xx.h:
Add definitions and structures to handle the new SCB completion scheme.
Add a controller flag that indicates if the controller is in HostRAID
mode.
aic79xx.reg:
Remove macros used for toggling from one data fifo mode to the other.
They have not been in use for some time.
Add scratch ram fields for our new qfreeze count scheme, converting
the complete dma list into an "stailq", and providing for the "complete
on qfreeze" SCB completion list. Some other fields were moved to retain
proper field alignment (alignment >= field size in bytes).
aic79xx.seq:
Add code to our idle loop to:
o Process deferred completions once a qfreeze event has taken full
effect.
o Thaw the queue once the sequencer and host qfreeze counts match.
Generate 64bit completion entries passing the SCB_SGPTR field as the
"good status" indicator. The first bit in this field is only set if
we have a valid status packet to send to the host.
Convert the COMPLETE_DMA_SCB list to an "stailq".
When using "setjmp" to register an idle loop handler, do not combine
the "ret" with the block move to pop the stack address in the same
instruction. At least on the A, this results in a return to the setjmp
caller, not to the new address at the top of the stack. Since we want
the latter (we want the newly registered handler to only be invoked from
the idle loop), we must use a separate ret instruction.
Add a few missing critical sections.
Close a race condition that can occur on Rev A. silicon. If both FIFOs
happen to be allocated before the sequencer has a chance to service the
FIFO that was allocated first, we must take special care to service the
FIFO that is not active on the SCSI bus first. This guarantees that a
FIFO will be freed to handle any snapshot requests for the FIFO that is
still on the bus. Chosing the incorrect FIFO will result in deadlock.
Update comments.
aic79xx_inline.h
Correct the offset calculation for the syncing of our qoutfifo.
Update ahd_check_cmdcmpltqueues() for the larger completion entries.
aic79xx_pci.c:
Attach to HostRAID controllers by default. In the future I may add a
sysctl to modify the behavior, but since FreeBSD does not have any
HostRAID drivers, failing to attach just results in more email and
bug reports for the author.
MFC After: 1week
that Asus provides on its CDs has both a MiniportSend() routine
and a MiniportSendPackets() function. The Microsoft NDIS docs say
that if a driver has both, only the MiniportSendPackets() routine
will be used. Although I think I implemented the support correctly,
calling the MiniportSend() routine seems to result in no packets going
out on the air, even though no error status is returned. The
MiniportSendPackets() function does work though, so at least in
this case it doesn't matter.
In if_ndis.c:ndis_getstate_80211(), if ndis_get_assoc() returns
an error, don't bother trying to obtain any other state since the
calls may fail, or worse cause the underlying driver to crash.
(The above two changes make the Asus-supplied Centrino work.)
Also, when calling the OID_802_11_CONFIGURATION OID, remember
to initialize the structure lengths correctly.
In subr_ndis.c:ndis_open_file(), set the current working directory
to rootvnode if we're in a thread that doesn't have a current
working directory set.
it is still above the critical temperature on the next poll cycle. This
is a 10 second advance notice by default. Document the private
(non-standard) notify we will be using with devd(8).
the system. Also, decrease the poll interval to 10 seconds from 30
seconds. This is needed because some systems will report an invalid high
temperature for one poll cycle. It is suspected this is due to the
embedded controller timing out. A typical value is 138C for one cycle on a
system that is otherwise 65C. This prevents the system from prematurely
shutting down after one invalid reading. It will still shut down after 30
seconds of high temperature, which is the same as previous default
behavior.
Tested by: Scott Lambert <lambert AT lambertfam.org>
is for an 802.11 device or not. At least one driver I have does not
support the OID_802_11_NETWORK_TYPES_SUPPORTED OID.
Also, for now, don't do anything special in the ndis_suspend() method.
I originally wanted to shut down the NIC but leave the IFF_UP flag alone
since technically the interface is meant to remain up, but an interrupt
may be delivered to the ISR on suspend, and if this happens while the
NIC is halted, we will crash, since none of the miniport driver methods
will function.
This needs to be dealt with properly later, but for now this prevents
a panic, and the resume method properly re-inits the NIC.
interrupt handler so that no locks are needed, and schedules the
command completion routine with a taskqueue_fast. This also corrects the
locking in the command thread and removes the need for operation flags.
Simple load tests show that this is now considerably faster than FreeBSD 4.x
in the SMP case when multiple i/o tasks are running.
won't associate in BSS mode if you use AUTHMODE_SHARED. I probably don't
understand enough to know when SHARED should be used vs. OPEN or WPA.
For now, go back to what works.
bit for this being the last CTIO2. It didn't matter since it really was the
last CTIO2 and the resources recycled, but still....
Add in CTIO3 define for future DAC work.
instead of taskqueue_swi. This shaves from 1 to 10% of the overhead.
Overhaul the locking once more, there was a few possible races that
are now closed.
panic() so that the buffer overflow just beyond this point is always
caught, even when the code is not compiled with INVARIANTS.
Change chn_setblocksize() buffer reallocation code to attempt to avoid
the feed_vchan16() buffer overflow by attempting to always keep the
bufsoft buffer at least as large as the bufhard buffer.
Print a diagnositic message
Danger! %s bufsoft size increasing from %d to %d after CHANNEL_SETBLOCKSIZE()
if our best attempts fail. If feed_vchan16() were to be called by
the interrupt handler while locks are dropped in chn_setblocksize()
to increase the size bufsoft to match the size of bufhard, the panic()
code in feed_vchan16() will be triggered. If the diagnostic message
is printed, it is a warning that a panic is possible if the system
were to see events in an "unlucky" order.
Change the locking code to avoid the need for MTX_RECURSIVE mutexes.
Add the MTX_DUPOK option to the channel mutexes and change the locking
sequence to always lock the parent channel before its children to avoid
the possibility of deadlock.
Actually implement locking assertions for the channel mutexes and fix
the problems found by the resulting assertion violations.
Clean up the locking code in dsp_ioctl().
Allocate the channel buffers using the malloc() M_WAITOK option instead
of M_NOWAIT so that buffer allocation won't fail. Drop locks across
the malloc() calls.
Add/modify KASSERTS() in attempt to detect problems early.
Abuse layering by adding a pointer to the snd_dbuf structure that points
back to the pcm_channel that owns it. This allows sndbuf_resize() to do
proper locking without having to change the its API, which is used by
the hardware drivers.
Don't dereference a NULL pointer when setting hw.snd.maxautovchans
if a hardware driver is not loaded. Noticed by Ryan Sommers
<ryans at gamersimpact.com>.
Tested by: Stefan Ehmann <shoesoft AT gmx.net>
Tested by: matk (Mathew Kanner)
Tested by: Gordon Bergling <gbergling AT 0xfce3.net>
kbd_attach() is called kbd[0-9]+, with a different unit number. This
makes it impossible to write a devd rule which will automatically
switch to a USB keyboard when one is attached, because there is no way
to guess the correct device node to pass to kbdcontrol.
Therefore, change kbd_attach() to create a device node using the
keyboard device's real name (atkbd0, ukbd0...), and create the
kbd[0-9]+ node as an alias for backward compatibility.
on an SIOCSIFADDR (by way of brain damage in net80211).
Also, avoid trying to set NDIS_80211_AUTHMODE_AUTO since the Microsoft
documentation I have recommends not using it, and the Centrino driver
seems to dislike being told to use it.
device that doesn't exists. I'm using my discretion and
committing without mentor approval since Seigo is away.
Noticed by: Maxime Henrion <mux@freebsd.org>
For some very unclear reason this device contains a FTDI 8U232AM USB->COM
adapter, but reports different device id than original 8U232AM. At the same
time, it reports vendor id of FTDI.
Sponsored by: Porta Software Ltd
MFC after: 2 weeks
rid's and to deallocate resources if a failure occurs during attach. This
patch also fixes the driver to return failure if bus_alloc_resource() for
the IRQ fails rather than panic'ing on the next line by passing a NULL
resource to bus_setup_intr(). The other attachments already do all this.
Submitted by: Jun Su <csujun@263.net>
problem with using taskqueue_swi is that some of the things we defer
into threads might block for up to several seconds. This is an unfriendly
thing to do to taskqueue_swi, since it is assumed the taskqueue threads
will execute fairly quickly once a task is submitted. Reorganized the
locking in if_ndis.c in the process.
Cleaned up ndis_write_cfg() and ndis_decode_parm() a little.
ubd_devinfo_vp() is getting an empty string from its usbd_get_string()
call on the vendor, instead of NULL. This means usb_knowndevs in not
consulted.
Add lines between grabbing those char *s and the USBVERBOSE ifdef to
set vendor to NULL if it is the empty string (similarly for product).
This causes vendor to be filled-out, although the product name read
overrules usb_knowndevs (this appears to be a conscience decision made
by the NetBSD folks):
PR: kern/56097
Submitted by: Hal Burch <hburch@lumeta.com>
MFC after: 1 week
pain and suffering. Attempt to back it out by removing the 'if the
requested range is larger than the window, clip to the window' code.
This is a band-aide until the issues are better understood and the
issues with the lazy allocation patches are resolved.
This takes us a lot closer to refcounting dev_t.
This patch originally by cg@ with a few minor changes by me.
It is largely untested, but has been HEADSUP'ed twice, so presumably
people have not found any issues with it.
Submitted by: cg@
This prevents xpt_bus_register() from dereferencing NULL.
- Assign pointer to NULL after cam_sim_free().
Submitted by: Paul Twohey <twohey@CS.Stanford.EDU>
the definitions for NDIS_BUS_SPACE_IO and NDIS_BUS_SPACE_MEM logically
belong in hal_var.h. At least, that's my story, and I'm sticking to it.
Also, remove definition of __stdcall from if_ndis.c now that it's pulled
in from pe_var.h.
This gives +10% performance on simple tests, so definitly worth it.
A few percent more could be had by not using M_ZERO'd alloc's, but
we then need to clear fields all over the place to be safe, and
that was deemed not worth the trouble (and it makes life dangerous).
kmem_free(). Note: The FreeBSD-specific code in this file has been
subsumed by the FreeBSD-specific header file, pdq_freebsd.h. That header
file already specifies the use of contigmalloc() and contigfree(). Thus,
the purpose of this change is to avoid having nonsensical examples of
FreeBSD-specific memory allocation in our source tree.
these add support for listing BSSIDs via wicontrol -l. I added code
to call OID_802_11_BSSID_LIST_SCAN to allow scanning for any nearby
wirelsss nets.
Convert from using individual mutexes to a mutex pool, created in
subr_ndis.c. This deals with the problem of drivers creating locks
in their DriverEntry() routines which might get trashed later.
Put some messages under IFF_DEBUG.
of the leftovers from the old version that really doesn't work anymore.
Add a reset function for host-end of the ATA channel. This is needed
for the SiI3112 in order to whack it back to reality if a device
locks up the SATA interface (thereby preventing that we can reset the
device). The result is that ATA now recovers from the timeouts that
happens with the SiI3112A and more or less all disks based on old
PATA electronics with a Marvell PATA->SATA converter. This includes
lots of the popular SATA dongles and the WDC Raptor disks..
I started with a year-old patch by Orlando Bassotto
<orlando.bassotto@ieo-research.it>, and ported it to 5.2-CURRENT along with
fixing the problems working with pre-Audigy cards.
signals to addresses to the child busses. Typically, ProgIf of 1
means a subtractive bridge. However, Intel has a whole lot of ones
with a ProgIf of 80 that are also subtractive. We cope with these
bridges too. This eliminates hw.pci.allow_unsupported_io_range
because that had almost the same effect as these patches (almost means
'buggy'). Remove the bogus checks for ISA bus locations: these cycles
aren't special and are only passed by transparent bridges.
We allow any range to succeed. If the range is a superset of the
range that's decoded, trim the resource to that range. Otherwise,
pass the range unchanged. This will change the location that PC Card
and CardBus cards are attached. This might bogusly cause some
overlapping allocation that wasn't present before, but the overlapping
fixes need to be in the pci level.
There's also a few formatting changes here.
which has two important flags in it: the 'allocated by NDIS' flag
and the 'media specific info present' flag. There are two Windows macros
for getting/setting media specific info fields within the ndis_packet
structure which can behave improperly if these flags are not initialized
correctly when a packet is allocated. It seems the correct thing
to do is always set the NDIS_PACKET_ALLOCATED_BY_NDIS flag on
all newly allocated packets.
This fixes the crashes with the Intel Centrino wireless driver.
My sample card now seems to work correctly.
Also, fix a potential LOR involving ndis_txeof() in if_ndis.c.
MAC address in the EEPROM, and we need to get it from OpenFirmware.
This isn't very pretty but time is lacking to do this in a better
way this near 5.2-RELEASE. This is a RELENG_5_2 candidate.
Original version by: Marius Strobl <marius@alchemy.franken.de>
Tested by: Pete Bentley <pete@sorted.org>
Reviewed by: jake
Add tcode_str[] and improve debug message.
* sbp
If max_speed is negative, use the maximum speed which the
ohci chip supports. The default max_speed is -1.
* if_fwe
If tx_speed is negative, use the maximum speed which the
ohci chip supports. The default tx_speed is 2.
the ni_dpccountlock member is an ndis_kspin_lock, not an
ndis_spin_lock (the latter is too big).
Run if_ndis.c:ndis_tick() via taskqueue_schedule(). Also run
ndis_start() via taskqueue in certain circumstances.
Using these tweaks, I can now get the Broadcom BCM5701 NDIS
driver to load and run. Unfortunately, the version I have seems
to suffer from the same bug as the SMC 83820 driver, which is
that it creates a spinlock during its DriverEntry() routine.
I'm still debating the right way to deal with this.
frame, not the first. It is probably also not safe to free the mbuf chain
as soon as the OWN bit is cleared on the first descriptor since the chip
may not be done copying the frame into the transmit FIFO. Revert the part of
of busdma conversion (if_dc.c rev 1.115) which changed dc_txeof() to look for
the status in the first descriptor and free the mbuf chain when processing
the first descriptor for the frame, and revert the matching changes elsewhere
in the driver. This part of the busdma change caused the driver to report
spurious collisions and output errors, even when running in full-duplex mode.
Reverting the mbuf chain handling slightly complicates dc_dma_map_txbuf(),
since it is responsible for setting the OWN bits on the descriptors, but does
not normally have direct access to the mbuf chain.
Tested by:
Dejan Lesjak <dejan.lesjak at ijs.si> alpha/<Intel 21143 10/100BaseTX>
"Xin LI" <delphij at frontfree.net> i386/<Macronix 98713 10/100BaseTX>
Wiktor Niesiobedzki <bsd at w.evip.pl> i386/<3Com OfficeConnect 10/100B>
Reviewed by: mux
additions to sys/amd64/isa/icu.h from PIIX4 and other datasheets. I
tweaked a few comments based on the NetBSD header of the same name when I
merged the constants to sys/i386/isa/icu.h, but the vast majority of this
file was created independently by Peter and not taken from any existing
files.
Submitted by: peter
the RT_MESSAGETABLE resources that some driver binaries have.
This allows us to print error messages in ndis_syslog().
- Correct the implementation of InterlockedIncrement() and
InterlockedDecrement() -- they return uint32_t, not void.
- Correct the declarations of the 64-bit arithmetic shift
routines in subr_ntoskrnl.c (_allshr, allshl, etc...). These
do not follow the _stdcall convention: instead, they appear
to be __attribute__((regparm(3)).
- Change the implementation of KeInitializeSpinLock(). There is
no complementary KeFreeSpinLock() function, so creating a new
mutex on each call to KeInitializeSpinLock() leaks resources
when a driver is unloaded. For now, KeInitializeSpinLock()
returns a handle to the ntoskrnl interlock mutex.
- Use a driver's MiniportDisableInterrupt() and MiniportEnableInterrupt()
routines if they exist. I'm not sure if I'm doing this right
yet, but at the very least this shouldn't break any currently
working drivers, and it makes the Intel PRO/1000 driver work.
- In ndis_register_intr(), save some state that might be needed
later, and save a pointer to the driver's interrupt structure
in the ndis_miniport_block.
- Save a pointer to the driver image for use by ndis_syslog()
when it calls pe_get_message().
o O2Micro OZ711e1 is now recognized (note: I don't have one, and the current
owner of the Dell laptop is reporting problems).
o minor nits wrt copyright date.
and MiniportHandleInterrupt() is fired off later via a task queue in
ndis_intrtask(). This more accurately follows the NDIS interrupt handling
model, where the ISR does a minimal amount of work in interrupt context
and the handler is defered and run at a lower priority.
Create a separate ndis_intrmtx mutex just for the guarding the ISR.
Modify NdisSynchronizeWithInterrupt() to aquire the ndis_intrmtx
mutex before invoking the synchronized procedure. (The purpose of
this function is to provide mutual exclusion for code that shares
variables with the ISR.)
Modify NdisMRegisterInterrupt() to save a pointer to the miniport
block in the ndis_miniport_interrupt structure so that
NdisSynchronizeWithInterrupt() can grab it later and derive
ndis_intrmtx from it.
driver was compiled with.
Remove debug printf from ndis_assicn_pcirsc(). It doesn't serve
much purpose.
Implement NdisMIndicateStatus() and NdisMIndicateStatusComplete()
as functions in subr_ndis.c. In NDIS 4.0, they were functions. In
NDIS 5.0 and later, they're just macros.
Allocate a few extra packets/buffers beyond what the driver asks
for since sometimes it seems they can lie about how many they really
need, and some extra stupid ones don't check to see if NdisAllocatePacket()
and/or NdisAllocateBuffer() actually succeed.
unmodified for ATAPI type devices with ports/sysutils/cdrtools.
(But we need timeout routine which was in kern/58649 for fixate, I think.)
PR: kern/58649
Submitted by: SAKIYAMA Nobuo <sakichan@sakichan.org>
calling the haltfunc. If an interrupt is triggered by the init
or halt func, the IFF_UP flag must be set in order for us to be able
to service it.
In kern_ndis.c: implement a handler for NdisMSendResourcesAvailable()
(currently does nothing since we don't really need it).
In subr_ndis.c:
- Correct ndis_init_string() and ndis_unicode_to_ansi(),
which were both horribly broken.
- Implement NdisImmediateReadPciSlotInformation() and
NdisImmediateWritePciSlotInformation().
- Implement NdisBufferLength().
- Work around my first confirmed NDIS driver bug.
The SMC 9462 gigE driver (natsemi 83820-based copper)
incorrectly creates a spinlock in its DriverEntry()
routine and then destroys it in its MiniportHalt()
handler. This is wrong: spinlocks should be created
in MiniportInit(). In a Windows environment, this is
often not a problem because DriverEntry()/MiniportInit()
are called once when the system boots and MiniportHalt()
or the shutdown handler is called when the system halts.
With this stuff in place, this driver now seems to work:
ndis0: <SMC EZ Card 1000> port 0xe000-0xe0ff mem 0xda000000-0xda000fff irq 10 at device 9.0 on pci0
ndis0: assign PCI resources...
ndis_open_file("FLASH9.hex", 18446744073709551615)
ndis0: Ethernet address: 00:04:e2:0e:d3:f0
This should fix the problem with removing an address space handler
although we don't currently use that capability so it's unlikely anyone
saw this problem.
copyrights to the inf parser files.
Add a -n flag to ndiscvt to allow the user to override the default
device name of NDIS devices. Instead of "ndis0, ndis1, etc..."
you can have "foo0, foo1, etc..." This allows you to have more than
one kind of NDIS device in the kernel at the same time.
Convert from printf() to device_printf() in if_ndis.c, kern_ndis.c
and subr_ndis.c.
Create UMA zones for ndis_packet and ndis_buffer structs allocated
on transmit. The zones are created and destroyed in the modevent
handler in kern_ndis.c.
printf() and UMA changes submitted by green@freebsd.org
peter and jhb: use __volatile__ to prevent gcc from possibly reordering
code, use a null inline instruction instead of a no-op movl (I would
have done this myself if I knew it was allowed) and combine two register
assignments into a single asm statement.
- if_ndis.c: set the NDIS_STATUS_PENDING flag on all outgoing packets
in ndis_start(), make the resource allocation code a little smarter
about how it selects the altmem range, correct a lock order reversal
in ndis_tick().
ndis_var.h
- In kern_ndis.c:ndis_send_packets(), avoid dereferencing NULL pointers
created when the driver's send routine immediately calls the txeof
handler (which releases the packets for us anyway).
- In if_ndis.c:ndis_80211_setstate(), implement WEP support.
- Clear out an_dma_vaddr on free so we can test to see if dma is
setup when the card is kldunloaded/kldloaded etc. only for MPI350
- Use a common detach like wi(4)
- Notify on RID read overflow and truncate this currently causes
a panic in -stable when the stack during an ifconfig an0 is done
with newer firmware
- Convert from UNLOCK/tsleep/LOCK to msleep. I thought I did that
a while ago.
method with something a little more intelligent: use BUS_GET_RESOURCE_LIST()
to run through all resources allocated to us and map them as needed. This
way we know exactly what resources need to be mapped and what their RIDs
are without having to guess. This simplifies both ndis_attach() and
ndis_convert_res(), and eliminates the unfriendly "ndisX: couldn't map
<foo>" messages that are sometimes emitted during driver load.
o move tx taps from ath_start to ath_tx_start so lots more
state is available to tap
o add tx flags
o add tx rate
o add tx power (constant for the moment)
o add tx antenna state
a new bpf_mtap2 routine that does the right thing for an mbuf
and a variable-length chunk of data that should be prepended.
o while we're sweeping the drivers, use u_int32_t uniformly when
when prepending the address family (several places were assuming
sizeof(int) was 4)
o return M_ASSERTVALID to BPF_MTAP* now that all stack-allocated
mbufs have been eliminated; this may better be moved to the bpf
routines
Reviewed by: arch@ and several others
For received packets, an status of NDIS_STATUS_RESOURCES means we need
to copy the packet data and return the ndis_packet to the driver immediatel.
NDIS_STATUS_SUCCESS means we get to hold onto the packet, but we have
to set the status to NDIS_STATUS_PENDING so the driver knows we're
going to hang onto it for a while.
For transmit packets, NDIS_STATUS_PENDING means the driver will
asynchronously return the packet to us via the ndis_txeof() routine,
and NDIS_STATUS_SUCCESS means the driver sent the frame, and NDIS
(i.e. the OS) retains ownership of the packet and can free it
right away.
evaluate them. Whatever they're meant to do, they're doing it wrong.
Also:
- Clean up last bits of NULL fallout in subr_pe
- Don't let ndis_ifmedia_sts() do anything if the IFF_UP flag isn't set
- Implement NdisSystemProcessorCount() and NdisQueryMapRegisterCount().
flag isn't set.
- In ndis_attach(), halt the NIC before exiting the routine. Calling
ndis_init() will bring it up again, and we don't want it running
(and potentially generating interrupts) until we're ready to deal
with it.
mbuf<->packet housekeeping. Instead, add a couple of extra fields
to the end of ndis_packet. These should be invisible to the Windows
driver module.
This also lets me get rid of a little bit of evil from ndis_ptom()
(frobbing of the ext_buf field instead of relying on the MEXTADD()
macro).
- Fix ndis_time().
- Implement NdisGetSystemUpTime().
- Implement RtlCopyUnicodeString() and RtlUnicodeStringToAnsiString().
- In ndis_getstate_80211(), use sc->ndis_link to determine connect
status.
Submitted by: Brian Feldman <green@freebsd.org>
- Add explicit cardbus attachment in if_ndis.c
- Clean up after moving bus_setup_intr() in ndis_attach().
- When setting an ssid, program an empty ssid as a 1-byte string
with a single 0 byte. The Microsoft documentation says this is
how you're supposed to tell the NIC to attach to 'any' ssid.
- Keep trace of callout handles for timers externally from the
ndis_miniport_timer structs, and run through and clobber them
all after invoking the haltfunc just in case the driver left one
running. (We need to make sure all timers are cancelled on driver
unload.)
- Handle the 'cancelled' argument in ndis_cancel_timer() correctly.
supposed to be opaque to the driver, however it is exposed through
several macros which expect certain behavior. In my original
implementation, I used the mappedsystemva member of the structure
to hold a pointer to the buffer and bytecount to hold the length.
It turns out you must use the startva pointer to point to the
page containing the start of the buffer and set byteoffset to
the offset within the page where the buffer starts. So, for a buffer
with address 'baseva,' startva is baseva & ~(PAGE_SIZE -1) and
byteoffset is baseva & (PAGE_SIZE -1). We have to maintain this
convention everywhere that ndis_buffers are used.
Fortunately, Microsoft defines some macros for initializing and
manipulating NDIS_BUFFER structures in ntddk.h. I adapted some
of them for use here and used them where appropriate.
This fixes the discrepancy I observed between how RX'ed packet sizes
were being reported in the Broadcom wireless driver and the sample
ethernet drivers that I've tested. This should also help the
Intel Centrino wireless driver work.
Also try to properly initialize the 802.11 BSS and IBSS channels.
(Sadly, the channel value is meaningless since there's no way
in the existing NDIS API to get/set the channel, but this should
take care of any 'invalid channel (NULL)' messages printed on
the console.
broken BIOS. Separate ohci_controller_init() from ohci_init(),
and call ohci_controller_init() at resume process once more.
Discussed on [bsd-nomads:16737] - [bsd-nomads:16746].
Submitted by Hiroyuki Aizu <eyes@navi.org> [bsd-nomads:16741]
methods for USB devices in the same way of uhci driver. But this change
is not complete because some ohci controlers are not initialized completely.
So "kernel: usb0: 1 scheduling overruns" interrupt will generate many times.
This change will be same one in PR kern/60099.
Discussed on [bsd-nomads:16737] - [bsd-nomads:16746].
- Make ndis_get_info()/ndis_set_info() sleep on the setdone/getdone
routines if they get back NDIS_STATUS_PENDING.
- Add a bunch of net80211 support so that 802.11 cards can be twiddled
with ifconfig. This still needs more work and is not guaranteed to
work for everyone. It works on my 802.11b/g card anyway.
The problem here is Microsoft doesn't provide a good way to a) learn
all the rates that a card supports (if it has more than 8, you're
kinda hosed) and b) doesn't provide a good way to distinguish between
802.11b, 802.11b/g an 802.11a/b/g cards, so you sort of have to guess.
Setting the SSID and switching between infrastructure/adhoc modes
should work. WEP still needs to be implemented. I can't find any API
for getting/setting the channel other than the registry/sysctl keys.
to each other.
Correct the recovery thread's loop so that it
will terminate properly on shutdown. We also
clear the recovery_thread proc pointer so that
any additional calls to aic_terminate_recovery_thread()
will not attempt to kill a thread that doesn't
exist. Lastly, code the loop so that termination
will still be successfull even if the termination
request occurs just prior to us entering the loop
or while the recovery thread is off recovering
commands.