/* idl.c - ldap id list handling routines */ #include "portable.h" #include #include #include #include "slap.h" #include "ldapconfig.h" #include "back-ldbm.h" extern Datum ldbm_cache_fetch(); IDList * idl_alloc( int nids ) { IDList *new; /* nmax + nids + space for the ids */ new = (IDList *) ch_calloc( (2 + nids), sizeof(ID) ); new->b_nmax = nids; new->b_nids = 0; return( new ); } IDList * idl_allids( Backend *be ) { IDList *idl; idl = idl_alloc( 0 ); idl->b_nmax = ALLIDSBLOCK; idl->b_nids = next_id_get( be ); return( idl ); } void idl_free( IDList *idl ) { if ( idl == NULL ) { return; } free( (char *) idl ); } static IDList * idl_fetch_one( Backend *be, struct dbcache *db, Datum key ) { Datum data; IDList *idl; #ifdef HAVE_BERKELEY_DB2 Datum k2; memset( &k2, 0, sizeof( k2 ) ); memset( &data, 0, sizeof( data ) ); #endif /* Debug( LDAP_DEBUG_TRACE, "=> idl_fetch_one\n", 0, 0, 0 ); */ data = ldbm_cache_fetch( db, key ); idl = (IDList *) data.dptr; return( idl ); } IDList * idl_fetch( Backend *be, struct dbcache *db, Datum key ) { Datum data, k2; IDList *idl; IDList **tmp; char *kstr; int i, nids; #ifdef HAVE_BERKELEY_DB2 memset( &k2, 0, sizeof( k2 ) ); memset( &data, 0, sizeof( data ) ); #endif /* Debug( LDAP_DEBUG_TRACE, "=> idl_fetch\n", 0, 0, 0 ); */ data = ldbm_cache_fetch( db, key ); if ( (idl = (IDList *) data.dptr) == NULL ) { return( NULL ); } /* regular block */ if ( ! INDIRECT_BLOCK( idl ) ) { /* Debug( LDAP_DEBUG_TRACE, "<= idl_fetch %d ids (%d max)\n", idl->b_nids, idl->b_nmax, 0 ); */ /* make sure we have the current value of highest id */ if ( idl->b_nmax == ALLIDSBLOCK ) { idl_free( idl ); idl = idl_allids( be ); } return( idl ); } /* * this is an indirect block which points to other blocks. * we need to read in all the blocks it points to and construct * a big id list containing all the ids, which we will return. */ /* count the number of blocks & allocate space for pointers to them */ for ( i = 0; idl->b_ids[i] != NOID; i++ ) ; /* NULL */ tmp = (IDList **) ch_malloc( (i + 1) * sizeof(IDList *) ); /* read in all the blocks */ kstr = (char *) ch_malloc( key.dsize + 20 ); nids = 0; for ( i = 0; idl->b_ids[i] != NOID; i++ ) { sprintf( kstr, "%c%s%ld", CONT_PREFIX, key.dptr, idl->b_ids[i] ); k2.dptr = kstr; k2.dsize = strlen( kstr ) + 1; if ( (tmp[i] = idl_fetch_one( be, db, k2 )) == NULL ) { Debug( LDAP_DEBUG_ANY, "idl_fetch of (%s) returns NULL\n", k2.dptr, 0, 0 ); continue; } nids += tmp[i]->b_nids; } tmp[i] = NULL; idl_free( idl ); /* allocate space for the big block */ idl = idl_alloc( nids ); idl->b_nids = nids; nids = 0; /* copy in all the ids from the component blocks */ for ( i = 0; tmp[i] != NULL; i++ ) { if ( tmp[i] == NULL ) { continue; } SAFEMEMCPY( (char *) &idl->b_ids[nids], (char *) tmp[i]->b_ids, tmp[i]->b_nids * sizeof(ID) ); nids += tmp[i]->b_nids; idl_free( tmp[i] ); } free( (char *) tmp ); Debug( LDAP_DEBUG_TRACE, "<= idl_fetch %d ids (%d max)\n", idl->b_nids, idl->b_nmax, 0 ); return( idl ); } static int idl_store( Backend *be, struct dbcache *db, Datum key, IDList *idl ) { int rc, flags; Datum data; struct ldbminfo *li = (struct ldbminfo *) be->be_private; #ifdef HAVE_BERKELEY_DB2 memset( &data, 0, sizeof( data ) ); #endif /* Debug( LDAP_DEBUG_TRACE, "=> idl_store\n", 0, 0, 0 ); */ data.dptr = (char *) idl; data.dsize = (2 + idl->b_nmax) * sizeof(ID); #ifdef LDBM_DEBUG Statslog( LDAP_DEBUG_STATS, "<= idl_store(): rc=%d\n", rc, 0, 0, 0, 0 ); #endif flags = LDBM_REPLACE; if( li->li_dbcachewsync ) flags |= LDBM_SYNC; rc = ldbm_cache_store( db, key, data, flags ); /* Debug( LDAP_DEBUG_TRACE, "<= idl_store %d\n", rc, 0, 0 ); */ return( rc ); } static void idl_split_block( IDList *b, ID id, IDList **n1, IDList **n2 ) { unsigned int i; /* find where to split the block */ for ( i = 0; i < b->b_nids && id > b->b_ids[i]; i++ ) ; /* NULL */ *n1 = idl_alloc( i == 0 ? 1 : i ); *n2 = idl_alloc( b->b_nids - i + (i == 0 ? 0 : 1)); /* * everything before the id being inserted in the first block * unless there is nothing, in which case the id being inserted * goes there. */ SAFEMEMCPY( (char *) &(*n1)->b_ids[0], (char *) &b->b_ids[0], i * sizeof(ID) ); (*n1)->b_nids = (i == 0 ? 1 : i); if ( i == 0 ) { (*n1)->b_ids[0] = id; } else { (*n2)->b_ids[0] = id; } /* the id being inserted & everything after in the second block */ SAFEMEMCPY( (char *) &(*n2)->b_ids[i == 0 ? 0 : 1], (char *) &b->b_ids[i], (b->b_nids - i) * sizeof(ID) ); (*n2)->b_nids = b->b_nids - i + (i == 0 ? 0 : 1); } /* * idl_change_first - called when an indirect block's first key has * changed, meaning it needs to be stored under a new key, and the * header block pointing to it needs updating. */ static int idl_change_first( Backend *be, struct dbcache *db, Datum hkey, /* header block key */ IDList *h, /* header block */ int pos, /* pos in h to update */ Datum bkey, /* data block key */ IDList *b /* data block */ ) { int rc; /* Debug( LDAP_DEBUG_TRACE, "=> idl_change_first\n", 0, 0, 0 ); */ /* delete old key block */ if ( (rc = ldbm_cache_delete( db, bkey )) != 0 ) { Debug( LDAP_DEBUG_ANY, "ldbm_delete of (%s) returns %d\n", bkey.dptr, rc, 0 ); return( rc ); } /* write block with new key */ sprintf( bkey.dptr, "%c%s%ld", CONT_PREFIX, hkey.dptr, b->b_ids[0] ); bkey.dsize = strlen( bkey.dptr ) + 1; if ( (rc = idl_store( be, db, bkey, b )) != 0 ) { Debug( LDAP_DEBUG_ANY, "idl_store of (%s) returns %d\n", bkey.dptr, rc, 0 ); return( rc ); } /* update + write indirect header block */ h->b_ids[pos] = b->b_ids[0]; if ( (rc = idl_store( be, db, hkey, h )) != 0 ) { Debug( LDAP_DEBUG_ANY, "idl_store of (%s) returns %d\n", hkey.dptr, rc, 0 ); return( rc ); } return( 0 ); } int idl_insert_key( Backend *be, struct dbcache *db, Datum key, ID id ) { int i, j, first, rc; IDList *idl, *tmp, *tmp2, *tmp3; char *kstr; Datum k2; #ifdef HAVE_BERKELEY_DB2 memset( &k2, 0, sizeof( k2 ) ); #endif if ( (idl = idl_fetch_one( be, db, key )) == NULL ) { #ifdef LDBM_DEBUG Statslog( LDAP_DEBUG_STATS, "=> idl_insert_key(): no key yet\n", 0, 0, 0, 0, 0 ); #endif idl = idl_alloc( 1 ); idl->b_ids[idl->b_nids++] = id; rc = idl_store( be, db, key, idl ); idl_free( idl ); return( rc ); } /* regular block */ if ( ! INDIRECT_BLOCK( idl ) ) { switch ( idl_insert( &idl, id, db->dbc_maxids ) ) { case 0: /* id inserted - store the updated block */ case 1: rc = idl_store( be, db, key, idl ); break; case 2: /* id already there - nothing to do */ rc = 0; break; case 3: /* id not inserted - block must be split */ /* check threshold for marking this an all-id block */ if ( db->dbc_maxindirect < 2 ) { idl_free( idl ); idl = idl_allids( be ); rc = idl_store( be, db, key, idl ); idl_free( idl ); return( rc ); } idl_split_block( idl, id, &tmp, &tmp2 ); idl_free( idl ); /* create the header indirect block */ idl = idl_alloc( 3 ); idl->b_nmax = 3; idl->b_nids = INDBLOCK; idl->b_ids[0] = tmp->b_ids[0]; idl->b_ids[1] = tmp2->b_ids[0]; idl->b_ids[2] = NOID; /* store it */ rc = idl_store( be, db, key, idl ); /* store the first id block */ kstr = (char *) ch_malloc( key.dsize + 20 ); sprintf( kstr, "%c%s%ld", CONT_PREFIX, key.dptr, tmp->b_ids[0] ); k2.dptr = kstr; k2.dsize = strlen( kstr ) + 1; rc = idl_store( be, db, k2, tmp ); /* store the second id block */ sprintf( kstr, "%c%s%ld", CONT_PREFIX, key.dptr, tmp2->b_ids[0] ); k2.dptr = kstr; k2.dsize = strlen( kstr ) + 1; rc = idl_store( be, db, k2, tmp2 ); free( kstr ); idl_free( tmp ); idl_free( tmp2 ); break; } idl_free( idl ); return( rc ); } /* * this is an indirect block which points to other blocks. * we need to read in the block into which the id should be * inserted, then insert the id and store the block. we might * have to split the block if it is full, which means we also * need to write a new "header" block. */ /* select the block to try inserting into */ for ( i = 0; idl->b_ids[i] != NOID && id > idl->b_ids[i]; i++ ) ; /* NULL */ if ( i != 0 ) { i--; first = 0; } else { first = 1; } /* get the block */ kstr = (char *) ch_malloc( key.dsize + 20 ); sprintf( kstr, "%c%s%ld", CONT_PREFIX, key.dptr, idl->b_ids[i] ); k2.dptr = kstr; k2.dsize = strlen( kstr ) + 1; if ( (tmp = idl_fetch_one( be, db, k2 )) == NULL ) { Debug( LDAP_DEBUG_ANY, "nonexistent continuation block (%s)\n", k2.dptr, 0, 0 ); return( -1 ); } /* insert the id */ switch ( idl_insert( &tmp, id, db->dbc_maxids ) ) { case 0: /* id inserted ok */ if ( (rc = idl_store( be, db, k2, tmp )) != 0 ) { Debug( LDAP_DEBUG_ANY, "idl_store of (%s) returns %d\n", k2.dptr, rc, 0 ); } break; case 1: /* id inserted - first id in block has changed */ /* * key for this block has changed, so we have to * write the block under the new key, delete the * old key block + update and write the indirect * header block. */ rc = idl_change_first( be, db, key, idl, i, k2, tmp ); break; case 2: /* id not inserted - already there */ break; case 3: /* id not inserted - block is full */ /* * first, see if it will fit in the next block, * without splitting, unless we're trying to insert * into the beginning of the first block. */ /* is there a next block? */ if ( !first && idl->b_ids[i + 1] != NOID ) { /* read it in */ sprintf( kstr, "%c%s%ld", CONT_PREFIX, key.dptr, idl->b_ids[i + 1] ); k2.dptr = kstr; k2.dsize = strlen( kstr ) + 1; if ( (tmp2 = idl_fetch_one( be, db, k2 )) == NULL ) { Debug( LDAP_DEBUG_ANY, "idl_fetch_one (%s) returns NULL\n", k2.dptr, 0, 0 ); break; } switch ( (rc = idl_insert( &tmp2, id, db->dbc_maxids )) ) { case 1: /* id inserted first in block */ rc = idl_change_first( be, db, key, idl, i + 1, k2, tmp2 ); /* FALL */ case 2: /* id already there - how? */ case 0: /* id inserted */ if ( rc == 2 ) { Debug( LDAP_DEBUG_ANY, "id %d already in next block\n", id, 0, 0 ); } free( kstr ); idl_free( tmp ); idl_free( tmp2 ); idl_free( idl ); return( 0 ); case 3: /* split the original block */ idl_free( tmp2 ); break; } } /* * must split the block, write both new blocks + update * and write the indirect header block. */ /* count how many indirect blocks */ for ( j = 0; idl->b_ids[j] != NOID; j++ ) ; /* NULL */ /* check it against all-id thresholed */ if ( j + 1 > db->dbc_maxindirect ) { /* * we've passed the all-id threshold, meaning * that this set of blocks should be replaced * by a single "all-id" block. our job: delete * all the indirect blocks, and replace the header * block by an all-id block. */ /* delete all indirect blocks */ for ( j = 0; idl->b_ids[j] != NOID; j++ ) { sprintf( kstr,"%c%s%ld", CONT_PREFIX, key.dptr, idl->b_ids[j] ); k2.dptr = kstr; k2.dsize = strlen( kstr ) + 1; rc = ldbm_cache_delete( db, k2 ); } /* store allid block in place of header block */ idl_free( idl ); idl = idl_allids( be ); rc = idl_store( be, db, key, idl ); free( kstr ); idl_free( idl ); idl_free( tmp ); return( rc ); } idl_split_block( tmp, id, &tmp2, &tmp3 ); idl_free( tmp ); /* create a new updated indirect header block */ tmp = idl_alloc( idl->b_nmax + 1 ); tmp->b_nids = INDBLOCK; /* everything up to the split block */ SAFEMEMCPY( (char *) tmp->b_ids, (char *) idl->b_ids, i * sizeof(ID) ); /* the two new blocks */ tmp->b_ids[i] = tmp2->b_ids[0]; tmp->b_ids[i + 1] = tmp3->b_ids[0]; /* everything after the split block */ SAFEMEMCPY( (char *) &tmp->b_ids[i + 2], (char *) &idl->b_ids[i + 1], (idl->b_nmax - i - 1) * sizeof(ID) ); /* store the header block */ rc = idl_store( be, db, key, tmp ); /* store the first id block */ sprintf( kstr, "%c%s%ld", CONT_PREFIX, key.dptr, tmp2->b_ids[0] ); k2.dptr = kstr; k2.dsize = strlen( kstr ) + 1; rc = idl_store( be, db, k2, tmp2 ); /* store the second id block */ sprintf( kstr, "%c%s%ld", CONT_PREFIX, key.dptr, tmp3->b_ids[0] ); k2.dptr = kstr; k2.dsize = strlen( kstr ) + 1; rc = idl_store( be, db, k2, tmp3 ); idl_free( tmp2 ); idl_free( tmp3 ); break; } free( kstr ); idl_free( tmp ); idl_free( idl ); return( rc ); } /* * idl_insert - insert an id into an id list. * returns 0 id inserted * 1 id inserted, first id in block has changed * 2 id not inserted, already there * 3 id not inserted, block must be split */ int idl_insert( IDList **idl, ID id, int maxids ) { unsigned int i, j; if ( ALLIDS( *idl ) ) { return( 2 ); /* already there */ } /* is it already there? XXX bin search XXX */ for ( i = 0; i < (*idl)->b_nids && id > (*idl)->b_ids[i]; i++ ) { ; /* NULL */ } if ( i < (*idl)->b_nids && (*idl)->b_ids[i] == id ) { return( 2 ); /* already there */ } /* do we need to make room for it? */ if ( (*idl)->b_nids == (*idl)->b_nmax ) { /* make room or indicate block needs splitting */ if ( (*idl)->b_nmax == maxids ) { return( 3 ); /* block needs splitting */ } (*idl)->b_nmax *= 2; if ( (*idl)->b_nmax > maxids ) { (*idl)->b_nmax = maxids; } *idl = (IDList *) ch_realloc( (char *) *idl, ((*idl)->b_nmax + 2) * sizeof(ID) ); } /* make a slot for the new id */ for ( j = (*idl)->b_nids; j != i; j-- ) { (*idl)->b_ids[j] = (*idl)->b_ids[j-1]; } (*idl)->b_ids[i] = id; (*idl)->b_nids++; (void) memset( (char *) &(*idl)->b_ids[(*idl)->b_nids], '\0', ((*idl)->b_nmax - (*idl)->b_nids) * sizeof(ID) ); return( i == 0 ? 1 : 0 ); /* inserted - first id changed or not */ } static IDList * idl_dup( IDList *idl ) { IDList *new; if ( idl == NULL ) { return( NULL ); } new = idl_alloc( idl->b_nmax ); SAFEMEMCPY( (char *) new, (char *) idl, (idl->b_nmax + 2) * sizeof(ID) ); return( new ); } static IDList * idl_min( IDList *a, IDList *b ) { return( a->b_nids > b->b_nids ? b : a ); } /* * idl_intersection - return a intersection b */ IDList * idl_intersection( Backend *be, IDList *a, IDList *b ) { unsigned int ai, bi, ni; IDList *n; if ( a == NULL || b == NULL ) { return( NULL ); } if ( ALLIDS( a ) ) { return( idl_dup( b ) ); } if ( ALLIDS( b ) ) { return( idl_dup( a ) ); } n = idl_dup( idl_min( a, b ) ); for ( ni = 0, ai = 0, bi = 0; ai < a->b_nids; ai++ ) { for ( ; bi < b->b_nids && b->b_ids[bi] < a->b_ids[ai]; bi++ ) ; /* NULL */ if ( bi == b->b_nids ) { break; } if ( b->b_ids[bi] == a->b_ids[ai] ) { n->b_ids[ni++] = a->b_ids[ai]; } } if ( ni == 0 ) { idl_free( n ); return( NULL ); } n->b_nids = ni; return( n ); } /* * idl_union - return a union b */ IDList * idl_union( Backend *be, IDList *a, IDList *b ) { unsigned int ai, bi, ni; IDList *n; if ( a == NULL ) { return( idl_dup( b ) ); } if ( b == NULL ) { return( idl_dup( a ) ); } if ( ALLIDS( a ) || ALLIDS( b ) ) { return( idl_allids( be ) ); } if ( b->b_nids < a->b_nids ) { n = a; a = b; b = n; } n = idl_alloc( a->b_nids + b->b_nids ); for ( ni = 0, ai = 0, bi = 0; ai < a->b_nids && bi < b->b_nids; ) { if ( a->b_ids[ai] < b->b_ids[bi] ) { n->b_ids[ni++] = a->b_ids[ai++]; } else if ( b->b_ids[bi] < a->b_ids[ai] ) { n->b_ids[ni++] = b->b_ids[bi++]; } else { n->b_ids[ni++] = a->b_ids[ai]; ai++, bi++; } } for ( ; ai < a->b_nids; ai++ ) { n->b_ids[ni++] = a->b_ids[ai]; } for ( ; bi < b->b_nids; bi++ ) { n->b_ids[ni++] = b->b_ids[bi]; } n->b_nids = ni; return( n ); } /* * idl_notin - return a intersection ~b (or a minus b) */ IDList * idl_notin( Backend *be, IDList *a, IDList *b ) { unsigned int ni, ai, bi; IDList *n; if ( a == NULL ) { return( NULL ); } if ( b == NULL || ALLIDS( b )) { return( idl_dup( a ) ); } if ( ALLIDS( a ) ) { n = idl_alloc( SLAPD_LDBM_MIN_MAXIDS ); ni = 0; for ( ai = 1, bi = 0; ai < a->b_nids && ni < n->b_nmax && bi < b->b_nmax; ai++ ) { if ( b->b_ids[bi] == ai ) { bi++; } else { n->b_ids[ni++] = ai; } } for ( ; ai < a->b_nids && ni < n->b_nmax; ai++ ) { n->b_ids[ni++] = ai; } if ( ni == n->b_nmax ) { idl_free( n ); return( idl_allids( be ) ); } else { n->b_nids = ni; return( n ); } } n = idl_dup( a ); ni = 0; for ( ai = 0, bi = 0; ai < a->b_nids; ai++ ) { for ( ; bi < b->b_nids && b->b_ids[bi] < a->b_ids[ai]; bi++ ) { ; /* NULL */ } if ( bi == b->b_nids ) { break; } if ( b->b_ids[bi] != a->b_ids[ai] ) { n->b_ids[ni++] = a->b_ids[ai]; } } for ( ; ai < a->b_nids; ai++ ) { n->b_ids[ni++] = a->b_ids[ai]; } n->b_nids = ni; return( n ); } ID idl_firstid( IDList *idl ) { if ( idl == NULL || idl->b_nids == 0 ) { return( NOID ); } if ( ALLIDS( idl ) ) { return( idl->b_nids == 1 ? NOID : 1 ); } return( idl->b_ids[0] ); } ID idl_nextid( IDList *idl, ID id ) { unsigned int i; if ( ALLIDS( idl ) ) { return( ++id < idl->b_nids ? id : NOID ); } for ( i = 0; i < idl->b_nids && idl->b_ids[i] < id; i++ ) { ; /* NULL */ } i++; if ( i >= idl->b_nids ) { return( NOID ); } else { return( idl->b_ids[i] ); } }