Some fixes for BDB_IDL_MULTI. Experimental back-hdb code.

This commit is contained in:
Howard Chu 2001-12-07 12:38:25 +00:00
parent 1d9818a8da
commit 505a8693e6
7 changed files with 606 additions and 17 deletions

View file

@ -16,7 +16,8 @@
LDAP_BEGIN_DECL
#define BDB_FILTER_INDICES 1
#define BDB_IDL_MULTI 1
/* #define BDB_IDL_MULTI 1 */
/* #define BDB_HIER 1 */
#define DN_BASE_PREFIX SLAP_INDEX_EQUALITY_PREFIX
#define DN_ONE_PREFIX '%'
@ -32,7 +33,11 @@ LDAP_BEGIN_DECL
#define BDB_TXN_RETRIES 16
#ifdef BDB_HIER
#define BDB_DBENV_HOME LDAP_RUNDIR LDAP_DIRSEP "openldap-hdb"
#else
#define BDB_DBENV_HOME LDAP_RUNDIR LDAP_DIRSEP "openldap-bdb"
#endif
#ifdef BDB_SUBDIRS
#define BDB_TMP_SUBDIR LDAP_DIRSEP "tmp"
@ -42,7 +47,11 @@ LDAP_BEGIN_DECL
#define BDB_SUFFIX ".bdb"
#define BDB_ID2ENTRY 0
#ifdef BDB_HIER
#define BDB_ID2PARENT 1
#else
#define BDB_DN2ID 1
#endif
#define BDB_NDB 2
/* The bdb on-disk entry format is pretty space-inefficient. Average
@ -50,7 +59,7 @@ LDAP_BEGIN_DECL
* fit into a single database page, more is better. 64K is BDB's
* upper bound. The same issues arise with IDLs in the index databases,
* but it's nearly impossible to avoid overflows there.
*
*
* When using BDB_IDL_MULTI, the IDL size is no longer an issue. Smaller
* pages are better for concurrency.
*/
@ -89,6 +98,14 @@ struct bdb_info {
slap_mask_t bi_defaultmask;
Avlnode *bi_attrs;
#ifdef BDB_HIER
Avlnode *bi_tree;
ldap_pvt_thread_rdwr_t bi_tree_rdwr;
void *bi_troot;
int bi_nrdns;
int bi_sufflen;
int bi_nsufflen;
#endif
int bi_txn;
int bi_txn_cp;
@ -106,7 +123,11 @@ struct bdb_info {
};
#define bi_id2entry bi_databases[BDB_ID2ENTRY]
#ifdef BDB_HIER
#define bi_id2parent bi_databases[BDB_ID2PARENT]
#else
#define bi_dn2id bi_databases[BDB_DN2ID]
#endif
struct bdb_op_info {
BackendDB* boi_bdb;

View file

@ -70,7 +70,7 @@ bdb_db_cache(
rc = db->bdi_db->set_pagesize( db->bdi_db, BDB_PAGESIZE );
#ifdef BDB_IDL_MULTI
rc = db->bdi_db->set_flags( db->bdi_db, DB_DUPSORT );
rc = db->bdi_db->set_flags( db->bdi_db, DB_DUP | DB_DUPSORT );
rc = db->bdi_db->set_dup_compare( db->bdi_db, bdb_bt_compare );
#endif

View file

@ -13,6 +13,7 @@
#include "back-bdb.h"
#include "idl.h"
#ifndef BDB_HIER
int
bdb_dn2id_add(
BackendDB *be,
@ -73,7 +74,7 @@ bdb_dn2id_add(
int i;
((char *)key.data)[0] = DN_SUBTREE_PREFIX;
for( i=0; subtree[i] != NULL; i++ ) {
if (be_issuffix(be, subtree[i]))
if( be_issuffix( be, subtree[i] ))
continue;
key.size = strlen( subtree[i] ) + 2;
AC_MEMCPY( &((char *)key.data)[1],
@ -391,3 +392,527 @@ bdb_dn2idl(
ch_free( key.data );
return rc;
}
#else /* BDB_HIER */
/* Experimental management routines for a hierarchically structured backend.
*
* Unsupported! Use at your own risk!
*
* Instead of a dn2id database, we use an id2parent database. Each entry in
* this database is a struct diskNode, containing the ID of the node's parent
* and the RDN of the node.
*/
typedef struct diskNode {
ID parent;
struct berval rdn;
struct berval nrdn;
} diskNode;
/* In bdb_db_open() we call bdb_build_tree() which reads the entire id2parent
* database into memory (into an AVL tree). Next we iterate through each node
* of this tree, connecting each child to its parent. The nodes in this AVL
* tree are a struct idNode. The immediate (Onelevel) children of a node are
* referenced in the i_kids AVL tree. With this arrangement, there is no need
* to maintain the DN_ONE_PREFIX or DN_SUBTREE_PREFIX database keys. Note that
* the DN of an entry is constructed by walking up the list of i_parent
* pointers, so no full DN is stored on disk anywhere. This makes modrdn
* extremely efficient, even when operating on a populated subtree.
*
* The idNode tree is searched directly from the root when performing id to
* entry lookups. The tree is traversed using the i_kids subtrees when
* performing dn to id lookups.
*/
typedef struct idNode {
ID i_id;
struct idNode *i_parent;
diskNode *i_rdn;
Avlnode *i_kids;
ldap_pvt_thread_rdwr_t i_kids_rdwr;
} idNode;
/* strcopy is like strcpy except it returns a pointer to the trailing NUL of
* the result string. This allows fast construction of catenated strings
* without the overhead of strlen/strcat.
*/
char *
bdb_strcopy(
char *a,
char *b
)
{
if (!a || !b)
return a;
while (*a++ = *b++) ;
return a-1;
}
/* The main AVL tree is sorted in ID order. The i_kids AVL trees are
* sorted in lexical order. These are the various helper routines used
* for the searches and sorts.
*/
static int
node_find_cmp(
ID id,
idNode *n
)
{
return id - n->i_id;
}
static int
node_frdn_cmp(
char *nrdn,
idNode *n
)
{
return strcmp(nrdn, n->i_rdn->nrdn.bv_val);
}
static int
node_add_cmp(
idNode *a,
idNode *b
)
{
return a->i_id - b->i_id;
}
static int
node_rdn_cmp(
idNode *a,
idNode *b
)
{
return strcmp(a->i_rdn->nrdn.bv_val, b->i_rdn->nrdn.bv_val);
}
idNode * bdb_find_id_node(
ID id,
Avlnode *tree
)
{
return avl_find(tree, (const void *)id, (AVL_CMP)node_find_cmp);
}
idNode * bdb_find_rdn_node(
char *nrdn,
Avlnode *tree
)
{
return avl_find(tree, (const void *)nrdn, (AVL_CMP)node_frdn_cmp);
}
/* This function links a node into its parent's i_kids tree. */
int bdb_insert_kid(
idNode *a,
Avlnode *tree
)
{
int rc;
if (a->i_rdn->parent == 0)
return 0;
a->i_parent = bdb_find_id_node(a->i_rdn->parent, tree);
if (!a->i_parent)
return -1;
ldap_pvt_thread_rdwr_wlock(&a->i_parent->i_kids_rdwr);
rc = avl_insert( &a->i_parent->i_kids, (caddr_t) a,
(AVL_CMP)node_rdn_cmp, (AVL_DUP) avl_dup_error );
ldap_pvt_thread_rdwr_wunlock(&a->i_parent->i_kids_rdwr);
return rc;
}
/* This function adds a node into the main AVL tree */
idNode *bdb_add_node(
ID id,
char *d,
struct bdb_info *bdb
)
{
idNode *node;
node = (idNode *)ch_malloc(sizeof(idNode));
node->i_id = id;
node->i_parent = NULL;
node->i_kids = NULL;
node->i_rdn = (diskNode *)d;
node->i_rdn->rdn.bv_val += (long)d;
node->i_rdn->nrdn.bv_val += (long)d;
ldap_pvt_thread_rdwr_init(&node->i_kids_rdwr);
avl_insert( &bdb->bi_tree, (caddr_t) node,
(AVL_CMP)node_add_cmp, (AVL_DUP) avl_dup_error );
if (id == 1)
bdb->bi_troot = node;
return node;
}
/* This function initializes the trees at startup time. */
int bdb_build_tree(
Backend *be
)
{
struct bdb_info *bdb = (struct bdb_info *) be->be_private;
int i, rc;
DBC *cursor;
DBT key, data;
ID id;
idNode *node;
char **rdns;
bdb->bi_tree = NULL;
rc = bdb->bi_id2parent->bdi_db->cursor(
bdb->bi_id2parent->bdi_db, NULL, &cursor,
bdb->bi_db_opflags );
if( rc != 0 ) {
return NOID;
}
/* When be_suffix is turned into struct berval or LDAPDN
* life will get a lot easier... Since no DNs live on disk, we
* need to operate on the be_suffix to fully qualify our DNs.
* We need to know how many components are in the suffix DN,
* so we can tell where the suffix ends and our nodes begin.
*
* Note that this code always uses be_suffix[0], so defining
* multiple suffixes for a single backend won't work!
*/
bdb->bi_sufflen = strlen(be->be_suffix[0]);
bdb->bi_nsufflen = strlen(be->be_nsuffix[0]);
rdns = ldap_explode_dn(be->be_nsuffix[0], 0);
for (i=0; rdns[i]; i++);
bdb->bi_nrdns = i;
charray_free(rdns);
DBTzero( &key );
DBTzero( &data );
key.data = (char *)&id;
key.ulen = sizeof( id );
key.flags = DB_DBT_USERMEM;
data.flags = DB_DBT_MALLOC;
while (cursor->c_get( cursor, &key, &data, DB_NEXT ) == 0) {
bdb_add_node( id, data.data, bdb );
}
cursor->c_close( cursor );
rc = avl_apply(bdb->bi_tree, (AVL_APPLY)bdb_insert_kid, bdb->bi_tree,
-1, AVL_INORDER );
return rc;
}
/* This function constructs a full DN for a given id. We really should
* be passing idNodes directly, to save some effort...
*/
int bdb_fix_dn(
BackendDB *be,
ID id,
Entry *e
)
{
struct bdb_info *bdb = (struct bdb_info *) be->be_private;
idNode *n, *o;
int rlen, nrlen;
char *ptr, *nptr;
ldap_pvt_thread_rdwr_rlock(&bdb->bi_tree_rdwr);
o = bdb_find_id_node(id, bdb->bi_tree);
rlen = bdb->bi_sufflen + 1;
nrlen = bdb->bi_nsufflen + 1;
for (n = o; n; n=n->i_parent) {
rlen += n->i_rdn->rdn.bv_len + 1;
nrlen += n->i_rdn->nrdn.bv_len + 1;
}
e->e_dn = ch_malloc(rlen + nrlen);
e->e_ndn = e->e_dn + rlen;
ptr = e->e_dn;
nptr = e->e_ndn;
for (n = o; n; n=n->i_parent) {
ptr = bdb_strcopy(ptr, n->i_rdn->rdn.bv_val);
*ptr++ = ',';
nptr = bdb_strcopy(nptr, n->i_rdn->nrdn.bv_val);
*nptr++ = ',';
}
ldap_pvt_thread_rdwr_runlock(&bdb->bi_tree_rdwr);
ptr--;
nptr--;
strcpy(ptr, be->be_suffix[0]);
strcpy(nptr, be->be_nsuffix[0]);
return 0;
}
int
bdb_dn2id_add(
BackendDB *be,
DB_TXN *txn,
const char *pdn,
Entry *e )
{
struct bdb_info *bdb = (struct bdb_info *) be->be_private;
int rc, rlen, nrlen;
DBT key, data;
DB *db = bdb->bi_id2parent->bdi_db;
char *nrdn = dn_rdn( be, e->e_ndn );
char *rdn;
diskNode *d;
idNode *n;
if (nrdn == NULL) {
nrdn = "";
rdn = "";
} else {
rdn = dn_rdn( be, e->e_dn );
}
nrlen = strlen(nrdn);
rlen = strlen(rdn);
d = ch_malloc(sizeof(diskNode) + rlen + nrlen + 2);
d->rdn.bv_len = rlen;
d->nrdn.bv_len = nrlen;
d->rdn.bv_val = (char *)(d+1);
d->nrdn.bv_val = bdb_strcopy(d->rdn.bv_val, rdn) + 1;
strcpy(d->nrdn.bv_val, nrdn);
d->rdn.bv_val -= (long)d;
d->nrdn.bv_val -= (long)d;
if (nrdn[0]) free(nrdn);
if (rdn[0]) free(rdn);
if (pdn) {
bdb_dn2id(be, txn, pdn, &d->parent);
} else {
d->parent = 0;
}
DBTzero(&key);
DBTzero(&data);
key.data = &e->e_id;
key.size = sizeof(ID);
key.flags = DB_DBT_USERMEM;
data.data = d;
data.size = sizeof(diskNode) + rlen + nrlen + 2;
data.flags = DB_DBT_USERMEM;
rc = db->put( db, txn, &key, &data, DB_NOOVERWRITE );
if (rc == 0) {
ldap_pvt_thread_rdwr_wlock(&bdb->bi_tree_rdwr);
n = bdb_add_node( e->e_id, data.data, bdb);
ldap_pvt_thread_rdwr_wunlock(&bdb->bi_tree_rdwr);
if (d->parent) {
ldap_pvt_thread_rdwr_rlock(&bdb->bi_tree_rdwr);
bdb_insert_kid(n, bdb->bi_tree);
ldap_pvt_thread_rdwr_runlock(&bdb->bi_tree_rdwr);
}
} else {
free(d);
}
return rc;
}
int
bdb_dn2id_delete(
BackendDB *be,
DB_TXN *txn,
const char *pdn,
const char *dn,
ID id )
{
struct bdb_info *bdb = (struct bdb_info *) be->be_private;
int rc;
DBT key;
DB *db = bdb->bi_id2parent->bdi_db;
idNode *n;
DBTzero(&key);
key.size = sizeof(id);
key.data = &id;
rc = db->del( db, txn, &key, 0);
ldap_pvt_thread_rdwr_wlock(&bdb->bi_tree_rdwr);
n = avl_delete(&bdb->bi_tree, (void *)id, (AVL_CMP)node_find_cmp);
if (n) {
if (n->i_parent) {
ldap_pvt_thread_rdwr_wlock(&n->i_parent->i_kids_rdwr);
avl_delete(&n->i_parent->i_kids, n->i_rdn->nrdn.bv_val,
(AVL_CMP)node_frdn_cmp);
ldap_pvt_thread_rdwr_wunlock(&n->i_parent->i_kids_rdwr);
}
free(n->i_rdn);
ldap_pvt_thread_rdwr_destroy(&n->i_kids_rdwr);
free(n);
}
if (id == 1)
bdb->bi_troot = NULL;
ldap_pvt_thread_rdwr_wunlock(&bdb->bi_tree_rdwr);
return rc;
}
int
bdb_dn2id_matched(
BackendDB *be,
DB_TXN *txn,
const char *in,
ID *id,
char **matchedDN )
{
struct bdb_info *bdb = (struct bdb_info *) be->be_private;
int i;
char **rdns;
idNode *n, *p;
if (!bdb->bi_troot)
return DB_NOTFOUND;
p = bdb->bi_troot;
if (be_issuffix(be, in)) {
*id = p->i_id;
return 0;
}
rdns = ldap_explode_dn(in, 0);
for (i=0; rdns[i]; i++);
i -= bdb->bi_nrdns;
if (i < 0)
return -1;
n = p;
ldap_pvt_thread_rdwr_rlock(&bdb->bi_tree_rdwr);
for (--i; i>=0; i--) {
ldap_pvt_thread_rdwr_rlock(&p->i_kids_rdwr);
n = bdb_find_rdn_node(rdns[i], p->i_kids);
ldap_pvt_thread_rdwr_runlock(&p->i_kids_rdwr);
if (!n) break;
p = n;
}
ldap_pvt_thread_rdwr_runlock(&bdb->bi_tree_rdwr);
if (n) {
*id = n->i_id;
} else if (matchedDN) {
int len = 0, j;
char *ptr;
++i;
for (j=i; rdns[j]; j++)
len += strlen(rdns[j]) + 1;
ptr = ch_malloc(len);
*matchedDN = ptr;
for (;rdns[i]; i++) {
ptr = bdb_strcopy(ptr, rdns[i]);
*ptr++ = ',';
}
ptr[-1] = '\0';
}
return n ? 0 : DB_NOTFOUND;
}
int
bdb_dn2id(
BackendDB *be,
DB_TXN *txn,
const char *dn,
ID *id )
{
return bdb_dn2id_matched(be, txn, dn, id, NULL);
}
int
bdb_dn2id_children(
BackendDB *be,
DB_TXN *txn,
const char *dn )
{
int rc;
struct bdb_info *bdb = (struct bdb_info *) be->be_private;
ID id;
idNode *n;
rc = bdb_dn2id(be, txn, dn, &id);
if (rc != 0)
return rc;
ldap_pvt_thread_rdwr_rlock(&bdb->bi_tree_rdwr);
n = bdb_find_id_node(id, bdb->bi_tree);
ldap_pvt_thread_rdwr_runlock(&bdb->bi_tree_rdwr);
if (!n->i_kids)
return DB_NOTFOUND;
else
return 0;
}
/* Since we don't store IDLs for onelevel or subtree, we have to construct
* them on the fly... Perhaps the i_kids tree ought to just be an IDL?
*/
static int
insert_one(
idNode *n,
ID *ids
)
{
return bdb_idl_insert(ids, n->i_id);
}
static int
insert_sub(
idNode *n,
ID *ids
)
{
int rc;
rc = bdb_idl_insert(ids, n->i_id);
if (rc == 0) {
ldap_pvt_thread_rdwr_rlock(&n->i_kids_rdwr);
rc = avl_apply(n->i_kids, (AVL_APPLY)insert_sub, ids, -1,
AVL_INORDER);
ldap_pvt_thread_rdwr_runlock(&n->i_kids_rdwr);
}
return rc;
}
int
bdb_dn2idl(
BackendDB *be,
const char *dn,
int prefix,
ID *ids )
{
struct bdb_info *bdb = (struct bdb_info *) be->be_private;
int rc;
ID id;
idNode *n;
if (prefix == DN_SUBTREE_PREFIX && be_issuffix(be, dn)) {
BDB_IDL_ALL(bdb, ids);
return 0;
}
rc = bdb_dn2id(be, NULL, dn, &id);
if (rc) return rc;
ldap_pvt_thread_rdwr_rlock(&bdb->bi_tree_rdwr);
n = bdb_find_id_node(id, bdb->bi_tree);
ldap_pvt_thread_rdwr_runlock(&bdb->bi_tree_rdwr);
ids[0] = 0;
ldap_pvt_thread_rdwr_rlock(&n->i_kids_rdwr);
if (prefix == DN_ONE_PREFIX) {
rc = avl_apply(n->i_kids, (AVL_APPLY)insert_one, ids, -1,
AVL_INORDER);
} else {
rc = avl_apply(n->i_kids, (AVL_APPLY)insert_sub, ids, -1,
AVL_INORDER);
}
ldap_pvt_thread_rdwr_runlock(&n->i_kids_rdwr);
return rc;
}
#endif /* BDB_HIER */

View file

@ -23,12 +23,23 @@ int bdb_id2entry_put(
DBT key, data;
struct berval bv;
int rc;
#ifdef BDB_HIER
char *odn, *ondn;
/* We only store rdns, and they go in the id2parent database. */
odn = e->e_dn; ondn = e->e_ndn;
e->e_dn = ""; e->e_ndn = "";
#endif
DBTzero( &key );
key.data = (char *) &e->e_id;
key.size = sizeof(ID);
rc = entry_encode( e, &bv );
#ifdef BDB_HIER
e->e_dn = odn; e->e_ndn = ondn;
#endif
if( rc != LDAP_SUCCESS ) {
return -1;
}
@ -47,7 +58,7 @@ int bdb_id2entry_add(
DB_TXN *tid,
Entry *e )
{
return bdb_id2entry_put( be, tid, e, DB_NOOVERWRITE );
return bdb_id2entry_put(be, tid, e, DB_NOOVERWRITE);
}
int bdb_id2entry_update(
@ -55,7 +66,7 @@ int bdb_id2entry_update(
DB_TXN *tid,
Entry *e )
{
return bdb_id2entry_put( be, tid, e, 0 );
return bdb_id2entry_put(be, tid, e, 0);
}
int bdb_id2entry(
@ -98,6 +109,9 @@ int bdb_id2entry(
*/
ch_free( data.data );
}
#ifdef BDB_HIER
bdb_fix_dn(be, id, *e);
#endif
return rc;
}
@ -143,6 +157,7 @@ int bdb_entry_return(
return 0;
}
int bdb_entry_release(
BackendDB *be,
Connection *c,

View file

@ -75,7 +75,7 @@ unsigned bdb_idl_search( ID *ids, ID id )
*/
unsigned base = 0;
unsigned cursor = 0;
int val;
int val = 0;
unsigned n = ids[0];
#if IDL_DEBUG > 0
@ -123,7 +123,7 @@ unsigned bdb_idl_search( ID *ids, ID id )
#endif
}
static int idl_insert( ID *ids, ID id )
int bdb_idl_insert( ID *ids, ID id )
{
unsigned x = bdb_idl_search( ids, id );
@ -316,6 +316,17 @@ bdb_idl_insert_key(
DBTzero( &data );
#ifdef BDB_IDL_MULTI
/* FIXME: We really ought to count how many data items currently exist
* for this key, and cap off with a range when we hit the max. We need
* to use a 0 in the first slot to denote a range - since the data are
* sorted in ascending order, the only way to get a flag into the
* first slot is to use the smallest possible ID value. The fetch
* function above can turn it into a "memory-format" range. We also
* have to delete all of the existing data items when converting from
* a list to a range. And of course, if it's already a range, we need
* to read it in and process it instead of just doing the blind put
* that we do right now...
*/
data.data = &id;
data.size = sizeof(id);
data.flags = DB_DBT_USERMEM;
@ -364,7 +375,7 @@ bdb_idl_insert_key(
}
} else {
rc = idl_insert( ids, id );
rc = bdb_idl_insert( ids, id );
if( rc == -1 ) {
Debug( LDAP_DEBUG_TRACE, "=> bdb_idl_insert_key: dup\n",
@ -373,7 +384,7 @@ bdb_idl_insert_key(
}
if( rc != 0 ) {
Debug( LDAP_DEBUG_ANY, "=> bdb_idl_insert_key: "
"idl_insert failed (%d)\n",
"bdb_idl_insert failed (%d)\n",
rc, 0, 0 );
return rc;

View file

@ -20,7 +20,11 @@ static struct bdbi_database {
int flags;
} bdbi_databases[] = {
{ "id2entry" BDB_SUFFIX, "id2entry", DB_BTREE, 0 },
#ifdef BDB_HIER
{ "id2parent" BDB_SUFFIX, "id2parent", DB_BTREE, 0 },
#else
{ "dn2id" BDB_SUFFIX, "dn2id", DB_BTREE, 0 },
#endif
{ NULL, NULL, 0, 0 }
};
@ -73,6 +77,9 @@ bdb_db_init( BackendDB *be )
ldap_pvt_thread_mutex_init( &bdb->bi_database_mutex );
ldap_pvt_thread_mutex_init( &bdb->bi_lastid_mutex );
#ifdef BDB_HIER
ldap_pvt_thread_rdwr_init( &bdb->bi_tree_rdwr );
#endif
be->be_private = bdb;
return 0;
@ -247,16 +254,19 @@ bdb_db_open( BackendDB *be )
rc = db->bdi_db->set_pagesize( db->bdi_db,
BDB_ID2ENTRY_PAGESIZE );
} else {
#ifdef BDB_HIER
rc = db->bdi_db->set_bt_compare( db->bdi_db,
bdb_bt_compare );
#elif defined(BDB_IDL_MULTI)
rc = db->bdi_db->set_flags( db->bdi_db,
DB_DUP | DB_DUPSORT );
rc = db->bdi_db->set_dup_compare( db->bdi_db,
bdb_bt_compare );
#endif
rc = db->bdi_db->set_pagesize( db->bdi_db,
BDB_PAGESIZE );
}
#ifdef BDB_IDL_MULTI
if( i == BDB_DN2ID ) {
rc = db->bdi_db->set_flags( db->bdi_db, DB_DUPSORT );
rc = db->bdi_db->set_dup_compare( db->bdi_db,
bdb_bt_compare );
}
#endif
rc = db->bdi_db->open( db->bdi_db,
bdbi_databases[i].file,
/* bdbi_databases[i].name, */ NULL,
@ -288,6 +298,9 @@ bdb_db_open( BackendDB *be )
}
/* <insert> open (and create) index databases */
#ifdef BDB_HIER
rc = bdb_build_tree( be );
#endif
#ifndef NO_THREADS
if( bdb->bi_lock_detect != DB_LOCK_NORUN ) {

View file

@ -103,6 +103,10 @@ Entry* bdb_tool_entry_get( BackendDB *be, ID id )
e->e_id = id;
}
#ifdef BDB_HIER
bdb_fix_dn(be, id, e);
#endif
return e;
}