Till now it used to call it only if there were not too many objects into
the local cache otherwise would send the latest one directly into the
shared cache. Now it always sends to the local cache and it's up to the
local cache to free its oldest objects. From a cache freshness perspective
it's better this way since we always evict cold objects instead of hot
ones. From an API perspective it's better because it will help make the
shared cache invisible to the public API.
Till now we could only evict oldest objects from all local caches using
pool_evict_from_local_caches() until the cache size was satisfying again,
but there was no way to evict excess objects from a single cache, which
is the reason why pool_put_to_cache() used to refrain from putting into
the local cache and would directly write to the shared cache, resulting
in massive writes when caches were full.
Let's add this new function now. It will stop once the number of objects
in the local cache is no higher than 16+total/8 or the cache size is no
more than 75% full, just like before.
For now the function is not used.
Continuing the unification of local and shared pools, now the usage of
pools is governed by CONFIG_HAP_POOLS without which allocations and
releases are performed directly from the OS using pool_alloc_nocache()
and pool_free_nocache().
There are two levels of freeing to the OS:
- code that wants to keep the pool's usage counters updated uses
pool_free_area() and handles the counters itself. That's what
pool_put_to_shared_cache() does in the no-global-pools case.
- code that does not want to update the counters because they were
already updated only calls pool_free_area().
Let's extract these calls to establish the symmetry with pool_get_from_os()
and pool_alloc_nocache(), resulting in pool_put_to_os() (which only updates
the allocated counter) and pool_free_nocache() (which also updates the used
counter). This will later allow to simplify the generic code.
A part of the code cannot be factored out because it still uses non-atomic
inc/dec for pool->used and pool->allocated as these are located under the
pool's lock. While it can make sense in terms of bus cycles, it does not
make sense in terms of code normalization. Further, some operations were
still performed under a lock that could be totally removed via the use of
atomic ops.
There is still one occurrence in pool_put_to_shared_cache() in the locked
code where pool_free_area() is called under the lock, which must absolutely
be fixed.
Now there's one part dealing with the allocation itself and keeping
counters up to date, and another one on top of it to return such an
allocated pointer to the user and update the use count and stats.
This is in anticipation for being able to group cache-related parts.
The release code is still done at once.
Till now it was limited to objects allocated from the OS which means
it had little use as soon as pools were enabled. Let's move it upper
in the layers so that any code can benefit from fault injection. In
addition this allows to pass a new flag POOL_F_NO_FAIL to disable it
if some callers prefer a no-failure approach.
ha_random() is quite heavy and uses atomic ops or even a lock on some
architectures. Here we don't seek good randoms, just statistical ones,
so let's use the statistical prng instead.
Now the multi-level cache becomes more visible:
pool_get_from_local_cache()
pool_put_to_local_cache()
pool_get_from_shared_cache()
pool_put_to_shared_cache()
The functions were rightfully called from/to_cache when the thread-local
cache was considered as the only cache, but this is getting terribly
confusing. Let's call them from/to local_cache to make it clear that
it is not related with the shared cache.
As a side note, since pool_evict_from_cache() used not to work for a
particular pool but for all of them at once, it was renamed to
pool_evict_from_local_caches() (plural form).
They were strictly equivalent, let's remerge them and rename them to
pool_alloc_nocache() as it's the call which performs a real allocation
which does not check nor update the cache. The only difference in the
past was the former taking the lock and not the second but now the lock
is not needed anymore at this stage since the pool's list is not touched.
In addition, given that the "avail" argument is no longer used by the
function nor by its callers, let's drop it.
Now we don't loop anymore trying to refill multiple items at once, and
an allocated object is directly returned to the requester instead of
being stored into the shared pool. This has multiple benefits. The
first one is that no locking is needed anymore on the allocation path
and the second one is that the loop will no longer cause latency spikes.
This is a first step towards unifying all the fallback code. Right now
these two functions are the only ones which do not update the needed_avg
rate counter since there's currently no shared pool kept when using them.
But their code is similar to what could be used everywhere except for
this one, so let's make them capable of maintaining usage statistics.
As a side effect the needed field in "show pools" will now be populated.
The mem_should_fail() call enabled by DEBUG_FAIL_ALLOC used to be placed
only in the no-cache version of the allocator. Now we can generalize it
to all modes and remove the exclusive test on CONFIG_HAP_NO_GLOBAL_POOLS.
We're going to make the local pool always present unless pools are
completely disabled. This means that pools are always enabled by
default, regardless of the use of threads. Let's drop this notion
of "local" pools and make it just "pool". The equivalent debug
option becomes DEBUG_NO_POOLS instead of DEBUG_NO_LOCAL_POOLS.
For now this changes nothing except the option and dropping the
dependency on USE_THREAD.
Initially per-thread pool caches were stored into a fixed-size array.
But this was a bit ugly because the last allocated pools were not able
to benefit from the cache at all. As a work around to preserve
performance, a size of 64 cacheable pools was set by default (there
are 51 pools at the moment, excluding any addon and debugging code),
so all in-tree pools were covered, at the expense of higher memory
usage.
In addition an index had to be calculated for each pool, and was used
to acces the pool cache head into that array. The pool index was not
even stored into the pools so it was required to determine it to access
the cache when the pool was already known.
This patch changes this by moving the pool cache head into the pool
head itself. This way it is certain that each pool will have its own
cache. This removes the need for index calculation.
The pool cache head is 32 bytes long so it was aligned to 64B to avoid
false sharing between threads. The extra cost is not huge (~2kB more
per pool than before), and we'll make better use of that space soon.
The pool cache head contains the size, which should probably be removed
since it's already in the pool's head.
When building with DEBUG_FAIL_ALLOC we call a random generator to decide
whether the pool alloc should succeed or fail, and there was a preliminary
debugging mechanism to keep sort of a history of the previous decisions. But
it was never used, enforces a lock during the allocation, and forces to use
static variables, all of which are limiting the ability to pursue the pools
cleanups with no real benefit. Let's get rid of them now.
When running with CONFIG_HAP_NO_GLOBAL_POOLS, it's theoritically possible
to keep an incorrect count of allocated entries in a pool because the
allocated counter was used as a cumulated counter of alloc calls instead
of a number of currently allocated items (it's possible the meaning has
changed over time). The only impact in this mode essentially is that
"show pools" will report incorrect values. But this would only happen on
limited pools, which is not even certain still exist.
This was added by recent commit 0bae07592 ("MEDIUM: pools: add
CONFIG_HAP_NO_GLOBAL_POOLS and CONFIG_HAP_GLOBAL_POOLS") so no backport
is needed.
This patch replaces roughly all occurrences of an HA_ATOMIC_ADD(&foo, 1)
or HA_ATOMIC_SUB(&foo, 1) with the equivalent HA_ATOMIC_INC(&foo) and
HA_ATOMIC_DEC(&foo) respectively. These are 507 changes over 45 files.
This fixes a gcc warning about a missing const on defproxy for
mem_parse_global_fail_alloc.
This is needed since the commit :
018251667e
CLEANUP: config: make the cfg_keyword parsers take a const for the
defproxy
We've reached a point where the global pools represent a significant
bottleneck with threads. On a 64-core machine, the performance was
divided by 8 between 32 and 64 H2 connections only because there were
not enough entries in the local caches to avoid picking from the global
pools, and the contention on the list there was very high. It becomes
obvious that we need to have an array of lists, but that will require
more changes.
In parallel, standard memory allocators have improved, with tcmalloc
and jemalloc finding their ways through mainstream systems, and glibc
having upgraded to a thread-aware ptmalloc variant, keeping this level
of contention here isn't justified anymore when we have both the local
per-thread pool caches and a fast process-wide allocator.
For these reasons, this patch introduces a new compile time setting
CONFIG_HAP_NO_GLOBAL_POOLS which is set by default when threads are
enabled with thread local pool caches, and we know we have a fast
thread-aware memory allocator (currently set for glibc>=2.26). In this
case we entirely bypass the global pool and directly use the standard
memory allocator when missing objects from the local pools. It is also
possible to force it at compile time when a good allocator is used with
another setup.
It is still possible to re-enable the global pools using
CONFIG_HAP_GLOBAL_POOLS, if a corner case is discovered regarding the
operating system's default allocator, or when building with a recent
libc but a different allocator which provides other benefits but does
not scale well with threads.
The LRU cache head was an array of list, which causes false sharing
between 4 to 8 threads in the same cache line. Let's move it to the
thread_info structure instead. There's no need to do the same for the
pool_cache[] array since it's already quite large (32 pointers each).
By doing this the request rate increased by 1% on a 16-thread machine.
This patch fixes all the leftovers from the include cleanup campaign. There
were not that many (~400 entries in ~150 files) but it was definitely worth
doing it as it revealed a few duplicates.
Most of the files dealing with error reports have to include log.h in order
to access ha_alert(), ha_warning() etc. But while these functions don't
depend on anything, log.h depends on a lot of stuff because it deals with
log-formats and samples. As a result it's impossible not to embark long
dependencies when using ha_warning() or qfprintf().
This patch moves these low-level functions to errors.h, which already
defines the error codes used at the same places. About half of the users
of log.h could be adjusted, sometimes revealing other issues such as
missing tools.h. Interestingly the total preprocessed size shrunk by
4%.
There's no point splitting the file in two since only cfgparse uses the
types defined there. A few call places were updated and cleaned up. All
of them were in C files which register keywords.
There is nothing left in common/ now so this directory must not be used
anymore.
The current state of the logging is a real mess. The main problem is
that almost all files include log.h just in order to have access to
the alert/warning functions like ha_alert() etc, and don't care about
logs. But log.h also deals with real logging as well as log-format and
depends on stream.h and various other things. As such it forces a few
heavy files like stream.h to be loaded early and to hide missing
dependencies depending where it's loaded. Among the missing ones is
syslog.h which was often automatically included resulting in no less
than 3 users missing it.
Among 76 users, only 5 could be removed, and probably 70 don't need the
full set of dependencies.
A good approach would consist in splitting that file in 3 parts:
- one for error output ("errors" ?).
- one for log_format processing
- and one for actual logging.
Almost no change except moving the cli_kw struct definition after the
defines. Almost all users had both types&proto included, which is not
surprizing since this code is old and it used to be the norm a decade
ago. These places were cleaned.
Just some minor reordering, and the usual cleanup of call places for
those which didn't need it. We don't include the whole tools.h into
stats-t anymore but just tools-t.h.
The type file was slightly tidied. The cli-specific APPCTX_CLI_ST1_* flag
definitions were moved to cli.h. The type file was adjusted to include
buf-t.h and not the huge buf.h. A few call places were fixed because they
did not need this include.
global.h was one of the messiest files, it has accumulated tons of
implicit dependencies and declares many globals that make almost all
other file include it. It managed to silence a dependency loop between
server.h and proxy.h by being well placed to pre-define the required
structs, forcing struct proxy and struct server to be forward-declared
in a significant number of files.
It was split in to, one which is the global struct definition and the
few macros and flags, and the rest containing the functions prototypes.
The UNIX_MAX_PATH definition was moved to compat.h.
And also rename standard.c to tools.c. The original split between
tools.h and standard.h dates from version 1.3-dev and was mostly an
accident. This patch moves the files back to what they were expected
to be, and takes care of not changing anything else. However this
time tools.h was split between functions and types, because it contains
a small number of commonly used macros and structures (e.g. name_desc)
which in turn cause the massive list of includes of tools.h to conflict
with the callers.
They remain the ugliest files of the whole project and definitely need
to be cleaned and split apart. A few types are defined there only for
functions provided there, and some parts are even OS-specific and should
move somewhere else, such as the symbol resolution code.
This moves types/activity.h to haproxy/activity-t.h and
proto/activity.h to haproxy/activity.h.
The macros defining the bit field values for the profiling variable
were moved to the type file to be more future-proof.
Now the file is ready to be stored into its final destination. A few
minor reorderings were performed to keep the file properly organized,
making the various sections more visible (cache & lockless).
In addition and to stay consistent, memory.c was renamed to pool.c.