2007-05-13 12:26:08 -04:00
|
|
|
/*
|
|
|
|
|
* Memory management functions.
|
|
|
|
|
*
|
|
|
|
|
* Copyright 2000-2007 Willy Tarreau <w@1wt.eu>
|
|
|
|
|
*
|
|
|
|
|
* This program is free software; you can redistribute it and/or
|
|
|
|
|
* modify it under the terms of the GNU General Public License
|
|
|
|
|
* as published by the Free Software Foundation; either version
|
|
|
|
|
* 2 of the License, or (at your option) any later version.
|
|
|
|
|
*
|
|
|
|
|
*/
|
2021-10-05 12:14:11 -04:00
|
|
|
|
|
|
|
|
#include <sys/mman.h>
|
2018-11-26 05:44:35 -05:00
|
|
|
#include <errno.h>
|
2007-05-13 12:26:08 -04:00
|
|
|
|
2021-10-06 13:54:09 -04:00
|
|
|
#include <haproxy/activity.h>
|
2020-05-27 06:58:42 -04:00
|
|
|
#include <haproxy/api.h>
|
2020-06-09 03:07:15 -04:00
|
|
|
#include <haproxy/applet-t.h>
|
2020-06-04 18:00:29 -04:00
|
|
|
#include <haproxy/cfgparse.h>
|
2020-06-04 15:07:02 -04:00
|
|
|
#include <haproxy/channel.h>
|
2020-06-04 14:19:54 -04:00
|
|
|
#include <haproxy/cli.h>
|
2020-06-05 11:27:29 -04:00
|
|
|
#include <haproxy/errors.h>
|
2020-06-04 11:05:57 -04:00
|
|
|
#include <haproxy/global.h>
|
2020-05-27 12:01:47 -04:00
|
|
|
#include <haproxy/list.h>
|
2020-06-09 03:07:15 -04:00
|
|
|
#include <haproxy/pool.h>
|
2022-05-27 03:25:10 -04:00
|
|
|
#include <haproxy/sc_strm.h>
|
2020-06-04 13:58:55 -04:00
|
|
|
#include <haproxy/stats-t.h>
|
2022-05-27 03:47:12 -04:00
|
|
|
#include <haproxy/stconn.h>
|
2020-06-09 03:07:15 -04:00
|
|
|
#include <haproxy/thread.h>
|
2020-06-03 12:09:46 -04:00
|
|
|
#include <haproxy/tools.h>
|
2007-05-13 12:26:08 -04:00
|
|
|
|
|
|
|
|
|
2018-11-26 11:09:46 -05:00
|
|
|
/* These ones are initialized per-thread on startup by init_pools() */
|
2018-10-16 04:28:54 -04:00
|
|
|
THREAD_LOCAL size_t pool_cache_bytes = 0; /* total cache size */
|
|
|
|
|
THREAD_LOCAL size_t pool_cache_count = 0; /* #cache objects */
|
|
|
|
|
|
2022-02-18 12:31:53 -05:00
|
|
|
static struct list pools __read_mostly = LIST_HEAD_INIT(pools);
|
2022-02-23 08:15:18 -05:00
|
|
|
int mem_poison_byte __read_mostly = 'P';
|
2022-02-21 11:16:22 -05:00
|
|
|
uint pool_debugging __read_mostly = /* set of POOL_DBG_* flags */
|
2019-01-29 09:20:16 -05:00
|
|
|
#ifdef DEBUG_FAIL_ALLOC
|
2022-02-21 11:16:22 -05:00
|
|
|
POOL_DBG_FAIL_ALLOC |
|
2022-02-21 11:31:50 -05:00
|
|
|
#endif
|
|
|
|
|
#ifdef DEBUG_DONT_SHARE_POOLS
|
|
|
|
|
POOL_DBG_DONT_MERGE |
|
2022-02-21 12:30:25 -05:00
|
|
|
#endif
|
|
|
|
|
#ifdef DEBUG_POOL_INTEGRITY
|
|
|
|
|
POOL_DBG_COLD_FIRST |
|
2022-02-21 12:42:53 -05:00
|
|
|
#endif
|
|
|
|
|
#ifdef DEBUG_POOL_INTEGRITY
|
|
|
|
|
POOL_DBG_INTEGRITY |
|
2022-02-22 03:21:13 -05:00
|
|
|
#endif
|
|
|
|
|
#ifdef CONFIG_HAP_NO_GLOBAL_POOLS
|
|
|
|
|
POOL_DBG_NO_GLOBAL |
|
2022-02-22 10:23:09 -05:00
|
|
|
#endif
|
|
|
|
|
#ifndef CONFIG_HAP_POOLS
|
|
|
|
|
POOL_DBG_NO_CACHE |
|
2022-02-23 04:10:33 -05:00
|
|
|
#endif
|
|
|
|
|
#if defined(DEBUG_POOL_TRACING)
|
|
|
|
|
POOL_DBG_CALLER |
|
2022-02-23 04:20:37 -05:00
|
|
|
#endif
|
|
|
|
|
#if defined(DEBUG_MEMORY_POOLS)
|
|
|
|
|
POOL_DBG_TAG |
|
2019-01-29 09:20:16 -05:00
|
|
|
#endif
|
2022-02-21 11:16:22 -05:00
|
|
|
0;
|
2019-01-29 09:20:16 -05:00
|
|
|
|
2022-02-23 09:20:53 -05:00
|
|
|
static const struct {
|
|
|
|
|
uint flg;
|
|
|
|
|
const char *set;
|
|
|
|
|
const char *clr;
|
|
|
|
|
const char *hlp;
|
|
|
|
|
} dbg_options[] = {
|
|
|
|
|
/* flg, set, clr, hlp */
|
|
|
|
|
{ POOL_DBG_FAIL_ALLOC, "fail", "no-fail", "randomly fail allocations" },
|
|
|
|
|
{ POOL_DBG_DONT_MERGE, "no-merge", "merge", "disable merging of similar pools" },
|
|
|
|
|
{ POOL_DBG_COLD_FIRST, "cold-first", "hot-first", "pick cold objects first" },
|
|
|
|
|
{ POOL_DBG_INTEGRITY, "integrity", "no-integrity", "enable cache integrity checks" },
|
|
|
|
|
{ POOL_DBG_NO_GLOBAL, "no-global", "global", "disable global shared cache" },
|
|
|
|
|
{ POOL_DBG_NO_CACHE, "no-cache", "cache", "disable thread-local cache" },
|
|
|
|
|
{ POOL_DBG_CALLER, "caller", "no-caller", "save caller information in cache" },
|
|
|
|
|
{ POOL_DBG_TAG, "tag", "no-tag", "add tag at end of allocated objects" },
|
|
|
|
|
{ POOL_DBG_POISON, "poison", "no-poison", "poison newly allocated objects" },
|
|
|
|
|
{ 0 /* end */ }
|
|
|
|
|
};
|
|
|
|
|
|
2022-02-21 11:16:22 -05:00
|
|
|
static int mem_fail_rate __read_mostly = 0;
|
2022-02-18 12:31:53 -05:00
|
|
|
static int using_default_allocator __read_mostly = 1;
|
2022-03-08 04:41:40 -05:00
|
|
|
static int disable_trim __read_mostly = 0;
|
2021-11-25 11:09:45 -05:00
|
|
|
static int(*my_mallctl)(const char *, void *, size_t *, void *, size_t) = NULL;
|
2021-09-15 04:05:48 -04:00
|
|
|
|
2021-12-23 03:26:30 -05:00
|
|
|
/* ask the allocator to trim memory pools.
|
|
|
|
|
* This must run under thread isolation so that competing threads trying to
|
|
|
|
|
* allocate or release memory do not prevent the allocator from completing
|
|
|
|
|
* its job. We just have to be careful as callers might already be isolated
|
|
|
|
|
* themselves.
|
|
|
|
|
*/
|
2021-09-15 04:38:21 -04:00
|
|
|
static void trim_all_pools(void)
|
|
|
|
|
{
|
2021-12-23 03:26:30 -05:00
|
|
|
int isolated = thread_isolated();
|
|
|
|
|
|
2022-03-08 04:41:40 -05:00
|
|
|
if (disable_trim)
|
|
|
|
|
return;
|
|
|
|
|
|
2021-12-23 03:26:30 -05:00
|
|
|
if (!isolated)
|
|
|
|
|
thread_isolate();
|
|
|
|
|
|
2021-11-25 11:14:38 -05:00
|
|
|
if (my_mallctl) {
|
|
|
|
|
unsigned int i, narenas = 0;
|
|
|
|
|
size_t len = sizeof(narenas);
|
|
|
|
|
|
|
|
|
|
if (my_mallctl("arenas.narenas", &narenas, &len, NULL, 0) == 0) {
|
|
|
|
|
for (i = 0; i < narenas; i ++) {
|
|
|
|
|
char mib[32] = {0};
|
|
|
|
|
snprintf(mib, sizeof(mib), "arena.%u.purge", i);
|
|
|
|
|
(void)my_mallctl(mib, NULL, NULL, NULL, 0);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
} else {
|
2021-11-25 11:09:45 -05:00
|
|
|
#if defined(HA_HAVE_MALLOC_TRIM)
|
2021-11-25 11:14:38 -05:00
|
|
|
if (using_default_allocator)
|
|
|
|
|
malloc_trim(0);
|
2021-11-26 15:44:44 -05:00
|
|
|
#elif defined(HA_HAVE_MALLOC_ZONE)
|
|
|
|
|
if (using_default_allocator) {
|
|
|
|
|
vm_address_t *zones;
|
|
|
|
|
unsigned int i, nzones;
|
|
|
|
|
|
|
|
|
|
if (malloc_get_all_zones(0, NULL, &zones, &nzones) == KERN_SUCCESS) {
|
|
|
|
|
for (i = 0; i < nzones; i ++) {
|
|
|
|
|
malloc_zone_t *zone = (malloc_zone_t *)zones[i];
|
|
|
|
|
|
|
|
|
|
/* we cannot purge anonymous zones */
|
|
|
|
|
if (zone->zone_name)
|
|
|
|
|
malloc_zone_pressure_relief(zone, 0);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
2021-11-25 11:09:45 -05:00
|
|
|
#endif
|
2021-11-25 11:14:38 -05:00
|
|
|
}
|
2021-12-23 03:26:30 -05:00
|
|
|
|
|
|
|
|
if (!isolated)
|
|
|
|
|
thread_release();
|
2021-09-15 04:38:21 -04:00
|
|
|
}
|
|
|
|
|
|
2021-09-15 04:05:48 -04:00
|
|
|
/* check if we're using the same allocator as the one that provides
|
|
|
|
|
* malloc_trim() and mallinfo(). The principle is that on glibc, both
|
|
|
|
|
* malloc_trim() and mallinfo() are provided, and using mallinfo() we
|
|
|
|
|
* can check if malloc() is performed through glibc or any other one
|
2021-11-25 11:09:45 -05:00
|
|
|
* the executable was linked against (e.g. jemalloc). Prior to this we
|
|
|
|
|
* have to check whether we're running on jemalloc by verifying if the
|
|
|
|
|
* mallctl() function is provided. Its pointer will be used later.
|
2021-09-15 04:05:48 -04:00
|
|
|
*/
|
|
|
|
|
static void detect_allocator(void)
|
|
|
|
|
{
|
2021-11-26 09:55:55 -05:00
|
|
|
#if defined(__ELF__)
|
2021-11-25 11:09:45 -05:00
|
|
|
extern int mallctl(const char *, void *, size_t *, void *, size_t) __attribute__((weak));
|
|
|
|
|
|
|
|
|
|
my_mallctl = mallctl;
|
2021-11-26 09:55:55 -05:00
|
|
|
#endif
|
2021-11-25 11:09:45 -05:00
|
|
|
|
|
|
|
|
if (!my_mallctl) {
|
|
|
|
|
my_mallctl = get_sym_curr_addr("mallctl");
|
|
|
|
|
using_default_allocator = (my_mallctl == NULL);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (!my_mallctl) {
|
|
|
|
|
#if defined(HA_HAVE_MALLOC_TRIM)
|
2021-09-16 03:18:21 -04:00
|
|
|
#ifdef HA_HAVE_MALLINFO2
|
2021-11-25 11:09:45 -05:00
|
|
|
struct mallinfo2 mi1, mi2;
|
2021-09-16 03:18:21 -04:00
|
|
|
#else
|
2021-11-25 11:09:45 -05:00
|
|
|
struct mallinfo mi1, mi2;
|
2021-09-16 03:18:21 -04:00
|
|
|
#endif
|
2021-11-25 11:09:45 -05:00
|
|
|
void *ptr;
|
2021-09-15 04:05:48 -04:00
|
|
|
|
2021-09-16 03:18:21 -04:00
|
|
|
#ifdef HA_HAVE_MALLINFO2
|
2021-11-25 11:09:45 -05:00
|
|
|
mi1 = mallinfo2();
|
2021-09-16 03:18:21 -04:00
|
|
|
#else
|
2021-11-25 11:09:45 -05:00
|
|
|
mi1 = mallinfo();
|
2021-09-16 03:18:21 -04:00
|
|
|
#endif
|
2021-11-25 11:09:45 -05:00
|
|
|
ptr = DISGUISE(malloc(1));
|
2021-09-16 03:18:21 -04:00
|
|
|
#ifdef HA_HAVE_MALLINFO2
|
2021-11-25 11:09:45 -05:00
|
|
|
mi2 = mallinfo2();
|
2021-09-16 03:18:21 -04:00
|
|
|
#else
|
2021-11-25 11:09:45 -05:00
|
|
|
mi2 = mallinfo();
|
2021-09-16 03:18:21 -04:00
|
|
|
#endif
|
2021-11-25 11:09:45 -05:00
|
|
|
free(DISGUISE(ptr));
|
2021-09-15 04:38:21 -04:00
|
|
|
|
2021-11-25 11:09:45 -05:00
|
|
|
using_default_allocator = !!memcmp(&mi1, &mi2, sizeof(mi1));
|
2021-11-26 15:44:44 -05:00
|
|
|
#elif defined(HA_HAVE_MALLOC_ZONE)
|
|
|
|
|
using_default_allocator = (malloc_default_zone() != NULL);
|
2021-11-25 11:09:45 -05:00
|
|
|
#endif
|
|
|
|
|
}
|
2021-09-15 04:05:48 -04:00
|
|
|
}
|
2021-09-15 04:41:24 -04:00
|
|
|
|
|
|
|
|
static int is_trim_enabled(void)
|
|
|
|
|
{
|
2021-11-25 11:09:45 -05:00
|
|
|
return using_default_allocator;
|
2021-09-15 04:41:24 -04:00
|
|
|
}
|
2021-09-15 04:38:21 -04:00
|
|
|
|
2022-02-21 11:16:22 -05:00
|
|
|
static int mem_should_fail(const struct pool_head *pool)
|
|
|
|
|
{
|
|
|
|
|
int ret = 0;
|
|
|
|
|
|
|
|
|
|
if (mem_fail_rate > 0 && !(global.mode & MODE_STARTING)) {
|
|
|
|
|
if (mem_fail_rate > statistical_prng_range(100))
|
|
|
|
|
ret = 1;
|
|
|
|
|
else
|
|
|
|
|
ret = 0;
|
|
|
|
|
}
|
|
|
|
|
return ret;
|
|
|
|
|
}
|
|
|
|
|
|
2007-05-13 12:26:08 -04:00
|
|
|
/* Try to find an existing shared pool with the same characteristics and
|
|
|
|
|
* returns it, otherwise creates this one. NULL is returned if no memory
|
2016-01-24 20:19:13 -05:00
|
|
|
* is available for a new creation. Two flags are supported :
|
|
|
|
|
* - MEM_F_SHARED to indicate that the pool may be shared with other users
|
|
|
|
|
* - MEM_F_EXACT to indicate that the size must not be rounded up
|
2007-05-13 12:26:08 -04:00
|
|
|
*/
|
|
|
|
|
struct pool_head *create_pool(char *name, unsigned int size, unsigned int flags)
|
|
|
|
|
{
|
2022-02-23 04:03:11 -05:00
|
|
|
unsigned int extra_mark, extra_caller, extra;
|
2007-05-13 12:26:08 -04:00
|
|
|
struct pool_head *pool;
|
2007-05-13 18:16:13 -04:00
|
|
|
struct pool_head *entry;
|
|
|
|
|
struct list *start;
|
2007-05-13 12:26:08 -04:00
|
|
|
unsigned int align;
|
2021-04-16 18:31:38 -04:00
|
|
|
int thr __maybe_unused;
|
2007-05-13 12:26:08 -04:00
|
|
|
|
2015-10-28 10:09:29 -04:00
|
|
|
/* We need to store a (void *) at the end of the chunks. Since we know
|
2007-05-13 12:26:08 -04:00
|
|
|
* that the malloc() function will never return such a small size,
|
|
|
|
|
* let's round the size up to something slightly bigger, in order to
|
|
|
|
|
* ease merging of entries. Note that the rounding is a power of two.
|
2015-10-28 10:09:29 -04:00
|
|
|
* This extra (void *) is not accounted for in the size computation
|
|
|
|
|
* so that the visible parts outside are not affected.
|
2018-10-23 08:40:23 -04:00
|
|
|
*
|
|
|
|
|
* Note: for the LRU cache, we need to store 2 doubly-linked lists.
|
2007-05-13 12:26:08 -04:00
|
|
|
*/
|
|
|
|
|
|
2022-02-23 04:20:37 -05:00
|
|
|
extra_mark = (pool_debugging & POOL_DBG_TAG) ? POOL_EXTRA_MARK : 0;
|
2022-02-23 04:10:33 -05:00
|
|
|
extra_caller = (pool_debugging & POOL_DBG_CALLER) ? POOL_EXTRA_CALLER : 0;
|
2022-02-23 04:03:11 -05:00
|
|
|
extra = extra_mark + extra_caller;
|
|
|
|
|
|
2016-01-24 20:19:13 -05:00
|
|
|
if (!(flags & MEM_F_EXACT)) {
|
2018-10-23 08:40:23 -04:00
|
|
|
align = 4 * sizeof(void *); // 2 lists = 4 pointers min
|
2022-02-23 04:03:11 -05:00
|
|
|
size = ((size + extra + align - 1) & -align) - extra;
|
2016-01-24 20:19:13 -05:00
|
|
|
}
|
2007-05-13 12:26:08 -04:00
|
|
|
|
2022-02-22 10:23:09 -05:00
|
|
|
if (!(pool_debugging & POOL_DBG_NO_CACHE)) {
|
|
|
|
|
/* we'll store two lists there, we need the room for this. This is
|
|
|
|
|
* guaranteed by the test above, except if MEM_F_EXACT is set, or if
|
|
|
|
|
* the only EXTRA part is in fact the one that's stored in the cache
|
|
|
|
|
* in addition to the pci struct.
|
|
|
|
|
*/
|
2022-02-23 04:03:11 -05:00
|
|
|
if (size + extra - extra_caller < sizeof(struct pool_cache_item))
|
|
|
|
|
size = sizeof(struct pool_cache_item) + extra_caller - extra;
|
2022-02-22 10:23:09 -05:00
|
|
|
}
|
|
|
|
|
|
2017-08-29 03:52:38 -04:00
|
|
|
/* TODO: thread: we do not lock pool list for now because all pools are
|
|
|
|
|
* created during HAProxy startup (so before threads creation) */
|
2007-05-13 18:16:13 -04:00
|
|
|
start = &pools;
|
2007-05-13 12:26:08 -04:00
|
|
|
pool = NULL;
|
2007-05-13 18:16:13 -04:00
|
|
|
|
|
|
|
|
list_for_each_entry(entry, &pools, list) {
|
|
|
|
|
if (entry->size == size) {
|
|
|
|
|
/* either we can share this place and we take it, or
|
2020-06-21 12:42:57 -04:00
|
|
|
* we look for a shareable one or for the next position
|
2007-05-13 18:16:13 -04:00
|
|
|
* before which we will insert a new one.
|
|
|
|
|
*/
|
2022-02-21 11:31:50 -05:00
|
|
|
if ((flags & entry->flags & MEM_F_SHARED) &&
|
|
|
|
|
(!(pool_debugging & POOL_DBG_DONT_MERGE) ||
|
|
|
|
|
strcmp(name, entry->name) == 0)) {
|
2007-05-13 18:16:13 -04:00
|
|
|
/* we can share this one */
|
2007-05-13 12:26:08 -04:00
|
|
|
pool = entry;
|
[MEDIUM] Fix memory freeing at exit
New functions implemented:
- deinit_pollers: called at the end of deinit())
- prune_acl: called via list_for_each_entry_safe
Add missing pool_destroy2 calls:
- p->hdr_idx_pool
- pool2_tree64
Implement all task stopping:
- health-check: needs new "struct task" in the struct server
- queue processing: queue_mgt
- appsess_refresh: appsession_refresh
before (idle system):
==6079== LEAK SUMMARY:
==6079== definitely lost: 1,112 bytes in 75 blocks.
==6079== indirectly lost: 53,356 bytes in 2,090 blocks.
==6079== possibly lost: 52 bytes in 1 blocks.
==6079== still reachable: 150,996 bytes in 504 blocks.
==6079== suppressed: 0 bytes in 0 blocks.
after (idle system):
==6945== LEAK SUMMARY:
==6945== definitely lost: 7,644 bytes in 137 blocks.
==6945== indirectly lost: 9,913 bytes in 587 blocks.
==6945== possibly lost: 0 bytes in 0 blocks.
==6945== still reachable: 0 bytes in 0 blocks.
==6945== suppressed: 0 bytes in 0 blocks.
before (running system for ~2m):
==9343== LEAK SUMMARY:
==9343== definitely lost: 1,112 bytes in 75 blocks.
==9343== indirectly lost: 54,199 bytes in 2,122 blocks.
==9343== possibly lost: 52 bytes in 1 blocks.
==9343== still reachable: 151,128 bytes in 509 blocks.
==9343== suppressed: 0 bytes in 0 blocks.
after (running system for ~2m):
==11616== LEAK SUMMARY:
==11616== definitely lost: 7,644 bytes in 137 blocks.
==11616== indirectly lost: 9,981 bytes in 591 blocks.
==11616== possibly lost: 0 bytes in 0 blocks.
==11616== still reachable: 4 bytes in 1 blocks.
==11616== suppressed: 0 bytes in 0 blocks.
Still not perfect but significant improvement.
2008-05-29 17:53:44 -04:00
|
|
|
DPRINTF(stderr, "Sharing %s with %s\n", name, pool->name);
|
2007-05-13 12:26:08 -04:00
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
2007-05-13 18:16:13 -04:00
|
|
|
else if (entry->size > size) {
|
|
|
|
|
/* insert before this one */
|
|
|
|
|
start = &entry->list;
|
|
|
|
|
break;
|
|
|
|
|
}
|
2007-05-13 12:26:08 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (!pool) {
|
2022-03-02 11:59:04 -05:00
|
|
|
void *pool_addr;
|
2018-10-16 01:58:39 -04:00
|
|
|
|
2022-03-02 11:59:04 -05:00
|
|
|
pool_addr = calloc(1, sizeof(*pool) + __alignof__(*pool));
|
|
|
|
|
if (!pool_addr)
|
2007-05-13 12:26:08 -04:00
|
|
|
return NULL;
|
2022-03-02 11:59:04 -05:00
|
|
|
|
|
|
|
|
/* always provide an aligned pool */
|
|
|
|
|
pool = (struct pool_head*)((((size_t)pool_addr) + __alignof__(*pool)) & -(size_t)__alignof__(*pool));
|
|
|
|
|
pool->base_addr = pool_addr; // keep it, it's the address to free later
|
|
|
|
|
|
2007-05-13 12:26:08 -04:00
|
|
|
if (name)
|
|
|
|
|
strlcpy2(pool->name, name, sizeof(pool->name));
|
2022-02-23 04:03:11 -05:00
|
|
|
pool->alloc_sz = size + extra;
|
2007-05-13 12:26:08 -04:00
|
|
|
pool->size = size;
|
|
|
|
|
pool->flags = flags;
|
2021-04-21 01:32:39 -04:00
|
|
|
LIST_APPEND(start, &pool->list);
|
2019-06-25 15:45:59 -04:00
|
|
|
|
2022-02-22 10:23:09 -05:00
|
|
|
if (!(pool_debugging & POOL_DBG_NO_CACHE)) {
|
|
|
|
|
/* update per-thread pool cache if necessary */
|
|
|
|
|
for (thr = 0; thr < MAX_THREADS; thr++) {
|
|
|
|
|
LIST_INIT(&pool->cache[thr].list);
|
|
|
|
|
pool->cache[thr].tid = thr;
|
|
|
|
|
pool->cache[thr].pool = pool;
|
|
|
|
|
}
|
2019-06-25 15:45:59 -04:00
|
|
|
}
|
2020-02-01 11:45:32 -05:00
|
|
|
}
|
|
|
|
|
pool->users++;
|
2007-05-13 12:26:08 -04:00
|
|
|
return pool;
|
|
|
|
|
}
|
|
|
|
|
|
2021-04-17 10:57:25 -04:00
|
|
|
/* Tries to allocate an object for the pool <pool> using the system's allocator
|
|
|
|
|
* and directly returns it. The pool's allocated counter is checked and updated,
|
2021-06-10 11:31:48 -04:00
|
|
|
* but no other checks are performed.
|
2021-04-17 10:57:25 -04:00
|
|
|
*/
|
|
|
|
|
void *pool_get_from_os(struct pool_head *pool)
|
|
|
|
|
{
|
|
|
|
|
if (!pool->limit || pool->allocated < pool->limit) {
|
2022-02-23 02:57:59 -05:00
|
|
|
void *ptr = pool_alloc_area(pool->alloc_sz);
|
2021-04-17 10:57:25 -04:00
|
|
|
if (ptr) {
|
|
|
|
|
_HA_ATOMIC_INC(&pool->allocated);
|
|
|
|
|
return ptr;
|
|
|
|
|
}
|
|
|
|
|
_HA_ATOMIC_INC(&pool->failed);
|
|
|
|
|
}
|
|
|
|
|
activity[tid].pool_fail++;
|
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
2021-04-17 11:48:40 -04:00
|
|
|
/* Releases a pool item back to the operating system and atomically updates
|
|
|
|
|
* the allocation counter.
|
|
|
|
|
*/
|
|
|
|
|
void pool_put_to_os(struct pool_head *pool, void *ptr)
|
|
|
|
|
{
|
2021-06-10 11:20:19 -04:00
|
|
|
#ifdef DEBUG_UAF
|
|
|
|
|
/* This object will be released for real in order to detect a use after
|
|
|
|
|
* free. We also force a write to the area to ensure we crash on double
|
|
|
|
|
* free or free of a const area.
|
|
|
|
|
*/
|
|
|
|
|
*(uint32_t *)ptr = 0xDEADADD4;
|
|
|
|
|
#endif /* DEBUG_UAF */
|
|
|
|
|
|
2022-02-23 02:57:59 -05:00
|
|
|
pool_free_area(ptr, pool->alloc_sz);
|
2021-04-17 11:48:40 -04:00
|
|
|
_HA_ATOMIC_DEC(&pool->allocated);
|
|
|
|
|
}
|
|
|
|
|
|
2021-04-15 12:20:12 -04:00
|
|
|
/* Tries to allocate an object for the pool <pool> using the system's allocator
|
|
|
|
|
* and directly returns it. The pool's counters are updated but the object is
|
|
|
|
|
* never cached, so this is usable with and without local or shared caches.
|
|
|
|
|
*/
|
|
|
|
|
void *pool_alloc_nocache(struct pool_head *pool)
|
MEDIUM: pools: add CONFIG_HAP_NO_GLOBAL_POOLS and CONFIG_HAP_GLOBAL_POOLS
We've reached a point where the global pools represent a significant
bottleneck with threads. On a 64-core machine, the performance was
divided by 8 between 32 and 64 H2 connections only because there were
not enough entries in the local caches to avoid picking from the global
pools, and the contention on the list there was very high. It becomes
obvious that we need to have an array of lists, but that will require
more changes.
In parallel, standard memory allocators have improved, with tcmalloc
and jemalloc finding their ways through mainstream systems, and glibc
having upgraded to a thread-aware ptmalloc variant, keeping this level
of contention here isn't justified anymore when we have both the local
per-thread pool caches and a fast process-wide allocator.
For these reasons, this patch introduces a new compile time setting
CONFIG_HAP_NO_GLOBAL_POOLS which is set by default when threads are
enabled with thread local pool caches, and we know we have a fast
thread-aware memory allocator (currently set for glibc>=2.26). In this
case we entirely bypass the global pool and directly use the standard
memory allocator when missing objects from the local pools. It is also
possible to force it at compile time when a good allocator is used with
another setup.
It is still possible to re-enable the global pools using
CONFIG_HAP_GLOBAL_POOLS, if a corner case is discovered regarding the
operating system's default allocator, or when building with a recent
libc but a different allocator which provides other benefits but does
not scale well with threads.
2021-03-02 14:05:09 -05:00
|
|
|
{
|
|
|
|
|
void *ptr = NULL;
|
|
|
|
|
|
2021-04-17 10:57:25 -04:00
|
|
|
ptr = pool_get_from_os(pool);
|
|
|
|
|
if (!ptr)
|
MEDIUM: pools: add CONFIG_HAP_NO_GLOBAL_POOLS and CONFIG_HAP_GLOBAL_POOLS
We've reached a point where the global pools represent a significant
bottleneck with threads. On a 64-core machine, the performance was
divided by 8 between 32 and 64 H2 connections only because there were
not enough entries in the local caches to avoid picking from the global
pools, and the contention on the list there was very high. It becomes
obvious that we need to have an array of lists, but that will require
more changes.
In parallel, standard memory allocators have improved, with tcmalloc
and jemalloc finding their ways through mainstream systems, and glibc
having upgraded to a thread-aware ptmalloc variant, keeping this level
of contention here isn't justified anymore when we have both the local
per-thread pool caches and a fast process-wide allocator.
For these reasons, this patch introduces a new compile time setting
CONFIG_HAP_NO_GLOBAL_POOLS which is set by default when threads are
enabled with thread local pool caches, and we know we have a fast
thread-aware memory allocator (currently set for glibc>=2.26). In this
case we entirely bypass the global pool and directly use the standard
memory allocator when missing objects from the local pools. It is also
possible to force it at compile time when a good allocator is used with
another setup.
It is still possible to re-enable the global pools using
CONFIG_HAP_GLOBAL_POOLS, if a corner case is discovered regarding the
operating system's default allocator, or when building with a recent
libc but a different allocator which provides other benefits but does
not scale well with threads.
2021-03-02 14:05:09 -05:00
|
|
|
return NULL;
|
|
|
|
|
|
2021-04-17 10:57:25 -04:00
|
|
|
swrate_add_scaled(&pool->needed_avg, POOL_AVG_SAMPLES, pool->used, POOL_AVG_SAMPLES/4);
|
2021-04-06 07:53:36 -04:00
|
|
|
_HA_ATOMIC_INC(&pool->used);
|
MEDIUM: pools: add CONFIG_HAP_NO_GLOBAL_POOLS and CONFIG_HAP_GLOBAL_POOLS
We've reached a point where the global pools represent a significant
bottleneck with threads. On a 64-core machine, the performance was
divided by 8 between 32 and 64 H2 connections only because there were
not enough entries in the local caches to avoid picking from the global
pools, and the contention on the list there was very high. It becomes
obvious that we need to have an array of lists, but that will require
more changes.
In parallel, standard memory allocators have improved, with tcmalloc
and jemalloc finding their ways through mainstream systems, and glibc
having upgraded to a thread-aware ptmalloc variant, keeping this level
of contention here isn't justified anymore when we have both the local
per-thread pool caches and a fast process-wide allocator.
For these reasons, this patch introduces a new compile time setting
CONFIG_HAP_NO_GLOBAL_POOLS which is set by default when threads are
enabled with thread local pool caches, and we know we have a fast
thread-aware memory allocator (currently set for glibc>=2.26). In this
case we entirely bypass the global pool and directly use the standard
memory allocator when missing objects from the local pools. It is also
possible to force it at compile time when a good allocator is used with
another setup.
It is still possible to re-enable the global pools using
CONFIG_HAP_GLOBAL_POOLS, if a corner case is discovered regarding the
operating system's default allocator, or when building with a recent
libc but a different allocator which provides other benefits but does
not scale well with threads.
2021-03-02 14:05:09 -05:00
|
|
|
|
|
|
|
|
/* keep track of where the element was allocated from */
|
2022-01-01 11:10:50 -05:00
|
|
|
POOL_DEBUG_SET_MARK(pool, ptr);
|
2022-01-25 09:56:50 -05:00
|
|
|
POOL_DEBUG_TRACE_CALLER(pool, (struct pool_cache_item *)ptr, NULL);
|
MEDIUM: pools: add CONFIG_HAP_NO_GLOBAL_POOLS and CONFIG_HAP_GLOBAL_POOLS
We've reached a point where the global pools represent a significant
bottleneck with threads. On a 64-core machine, the performance was
divided by 8 between 32 and 64 H2 connections only because there were
not enough entries in the local caches to avoid picking from the global
pools, and the contention on the list there was very high. It becomes
obvious that we need to have an array of lists, but that will require
more changes.
In parallel, standard memory allocators have improved, with tcmalloc
and jemalloc finding their ways through mainstream systems, and glibc
having upgraded to a thread-aware ptmalloc variant, keeping this level
of contention here isn't justified anymore when we have both the local
per-thread pool caches and a fast process-wide allocator.
For these reasons, this patch introduces a new compile time setting
CONFIG_HAP_NO_GLOBAL_POOLS which is set by default when threads are
enabled with thread local pool caches, and we know we have a fast
thread-aware memory allocator (currently set for glibc>=2.26). In this
case we entirely bypass the global pool and directly use the standard
memory allocator when missing objects from the local pools. It is also
possible to force it at compile time when a good allocator is used with
another setup.
It is still possible to re-enable the global pools using
CONFIG_HAP_GLOBAL_POOLS, if a corner case is discovered regarding the
operating system's default allocator, or when building with a recent
libc but a different allocator which provides other benefits but does
not scale well with threads.
2021-03-02 14:05:09 -05:00
|
|
|
return ptr;
|
|
|
|
|
}
|
|
|
|
|
|
2021-04-17 11:48:40 -04:00
|
|
|
/* Release a pool item back to the OS and keeps the pool's counters up to date.
|
|
|
|
|
* This is always defined even when pools are not enabled (their usage stats
|
|
|
|
|
* are maintained).
|
|
|
|
|
*/
|
|
|
|
|
void pool_free_nocache(struct pool_head *pool, void *ptr)
|
|
|
|
|
{
|
|
|
|
|
_HA_ATOMIC_DEC(&pool->used);
|
|
|
|
|
swrate_add(&pool->needed_avg, POOL_AVG_SAMPLES, pool->used);
|
|
|
|
|
pool_put_to_os(pool, ptr);
|
|
|
|
|
}
|
|
|
|
|
|
MEDIUM: pools: add CONFIG_HAP_NO_GLOBAL_POOLS and CONFIG_HAP_GLOBAL_POOLS
We've reached a point where the global pools represent a significant
bottleneck with threads. On a 64-core machine, the performance was
divided by 8 between 32 and 64 H2 connections only because there were
not enough entries in the local caches to avoid picking from the global
pools, and the contention on the list there was very high. It becomes
obvious that we need to have an array of lists, but that will require
more changes.
In parallel, standard memory allocators have improved, with tcmalloc
and jemalloc finding their ways through mainstream systems, and glibc
having upgraded to a thread-aware ptmalloc variant, keeping this level
of contention here isn't justified anymore when we have both the local
per-thread pool caches and a fast process-wide allocator.
For these reasons, this patch introduces a new compile time setting
CONFIG_HAP_NO_GLOBAL_POOLS which is set by default when threads are
enabled with thread local pool caches, and we know we have a fast
thread-aware memory allocator (currently set for glibc>=2.26). In this
case we entirely bypass the global pool and directly use the standard
memory allocator when missing objects from the local pools. It is also
possible to force it at compile time when a good allocator is used with
another setup.
It is still possible to re-enable the global pools using
CONFIG_HAP_GLOBAL_POOLS, if a corner case is discovered regarding the
operating system's default allocator, or when building with a recent
libc but a different allocator which provides other benefits but does
not scale well with threads.
2021-03-02 14:05:09 -05:00
|
|
|
|
2022-02-21 12:42:53 -05:00
|
|
|
/* Updates <pch>'s fill_pattern and fills the free area after <item> with it,
|
|
|
|
|
* up to <size> bytes. The item part is left untouched.
|
|
|
|
|
*/
|
|
|
|
|
void pool_fill_pattern(struct pool_cache_head *pch, struct pool_cache_item *item, uint size)
|
|
|
|
|
{
|
|
|
|
|
ulong *ptr = (ulong *)item;
|
|
|
|
|
uint ofs;
|
|
|
|
|
ulong u;
|
|
|
|
|
|
|
|
|
|
if (size <= sizeof(*item))
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
/* Upgrade the fill_pattern to change about half of the bits
|
|
|
|
|
* (to be sure to catch static flag corruption), and apply it.
|
|
|
|
|
*/
|
|
|
|
|
u = pch->fill_pattern += ~0UL / 3; // 0x55...55
|
|
|
|
|
ofs = sizeof(*item) / sizeof(*ptr);
|
|
|
|
|
while (ofs < size / sizeof(*ptr))
|
|
|
|
|
ptr[ofs++] = u;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* check for a pool_cache_item integrity after extracting it from the cache. It
|
|
|
|
|
* must have been previously initialized using pool_fill_pattern(). If any
|
|
|
|
|
* corruption is detected, the function provokes an immediate crash.
|
|
|
|
|
*/
|
|
|
|
|
void pool_check_pattern(struct pool_cache_head *pch, struct pool_cache_item *item, uint size)
|
|
|
|
|
{
|
|
|
|
|
const ulong *ptr = (const ulong *)item;
|
|
|
|
|
uint ofs;
|
|
|
|
|
ulong u;
|
|
|
|
|
|
|
|
|
|
if (size <= sizeof(*item))
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
/* let's check that all words past *item are equal */
|
|
|
|
|
ofs = sizeof(*item) / sizeof(*ptr);
|
|
|
|
|
u = ptr[ofs++];
|
|
|
|
|
while (ofs < size / sizeof(*ptr)) {
|
|
|
|
|
if (unlikely(ptr[ofs] != u))
|
|
|
|
|
ABORT_NOW();
|
|
|
|
|
ofs++;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2022-01-02 11:19:14 -05:00
|
|
|
/* removes up to <count> items from the end of the local pool cache <ph> for
|
|
|
|
|
* pool <pool>. The shared pool is refilled with these objects in the limit
|
|
|
|
|
* of the number of acceptable objects, and the rest will be released to the
|
|
|
|
|
* OS. It is not a problem is <count> is larger than the number of objects in
|
2022-02-22 10:23:09 -05:00
|
|
|
* the local cache. The counters are automatically updated. Must not be used
|
|
|
|
|
* with pools disabled.
|
2021-04-19 02:14:03 -04:00
|
|
|
*/
|
2022-01-02 11:19:14 -05:00
|
|
|
static void pool_evict_last_items(struct pool_head *pool, struct pool_cache_head *ph, uint count)
|
2021-04-19 02:14:03 -04:00
|
|
|
{
|
|
|
|
|
struct pool_cache_item *item;
|
2022-01-02 11:53:02 -05:00
|
|
|
struct pool_item *pi, *head = NULL;
|
2022-01-02 11:19:14 -05:00
|
|
|
uint released = 0;
|
2022-01-02 11:53:02 -05:00
|
|
|
uint cluster = 0;
|
2022-01-01 18:27:06 -05:00
|
|
|
uint to_free_max;
|
|
|
|
|
|
2022-02-22 10:23:09 -05:00
|
|
|
BUG_ON(pool_debugging & POOL_DBG_NO_CACHE);
|
|
|
|
|
|
2022-02-22 03:21:13 -05:00
|
|
|
/* Note: this will be zero when global pools are disabled */
|
2022-01-01 18:27:06 -05:00
|
|
|
to_free_max = pool_releasable(pool);
|
2021-04-19 02:14:03 -04:00
|
|
|
|
2022-01-02 11:19:14 -05:00
|
|
|
while (released < count && !LIST_ISEMPTY(&ph->list)) {
|
2022-01-02 06:40:14 -05:00
|
|
|
item = LIST_PREV(&ph->list, typeof(item), by_pool);
|
2022-02-09 10:23:55 -05:00
|
|
|
BUG_ON(&item->by_pool == &ph->list);
|
2022-02-21 12:42:53 -05:00
|
|
|
if (unlikely(pool_debugging & POOL_DBG_INTEGRITY))
|
|
|
|
|
pool_check_pattern(ph, item, pool->size);
|
2021-04-21 01:32:39 -04:00
|
|
|
LIST_DELETE(&item->by_pool);
|
|
|
|
|
LIST_DELETE(&item->by_lru);
|
2021-12-30 11:37:33 -05:00
|
|
|
|
2022-01-02 11:53:02 -05:00
|
|
|
if (to_free_max > released || cluster) {
|
2022-02-22 03:21:13 -05:00
|
|
|
/* will never match when global pools are disabled */
|
2022-01-01 18:27:06 -05:00
|
|
|
pi = (struct pool_item *)item;
|
2022-01-02 11:53:02 -05:00
|
|
|
pi->next = NULL;
|
|
|
|
|
pi->down = head;
|
|
|
|
|
head = pi;
|
|
|
|
|
cluster++;
|
|
|
|
|
if (cluster >= CONFIG_HAP_POOL_CLUSTER_SIZE) {
|
|
|
|
|
/* enough to make a cluster */
|
|
|
|
|
pool_put_to_shared_cache(pool, head, cluster);
|
|
|
|
|
cluster = 0;
|
|
|
|
|
head = NULL;
|
|
|
|
|
}
|
2022-01-01 18:27:06 -05:00
|
|
|
} else
|
2021-12-30 11:37:33 -05:00
|
|
|
pool_free_nocache(pool, item);
|
2022-01-02 11:53:02 -05:00
|
|
|
|
|
|
|
|
released++;
|
2022-01-01 18:27:06 -05:00
|
|
|
}
|
|
|
|
|
|
2022-01-02 11:53:02 -05:00
|
|
|
/* incomplete cluster left */
|
|
|
|
|
if (cluster)
|
|
|
|
|
pool_put_to_shared_cache(pool, head, cluster);
|
|
|
|
|
|
2022-01-02 11:19:14 -05:00
|
|
|
ph->count -= released;
|
|
|
|
|
pool_cache_count -= released;
|
|
|
|
|
pool_cache_bytes -= released * pool->size;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Evicts some of the oldest objects from one local cache, until its number of
|
|
|
|
|
* objects is no more than 16+1/8 of the total number of locally cached objects
|
|
|
|
|
* or the total size of the local cache is no more than 75% of its maximum (i.e.
|
|
|
|
|
* we don't want a single cache to use all the cache for itself). For this, the
|
2022-02-09 10:19:24 -05:00
|
|
|
* list is scanned in reverse. If <full> is non-null, all objects are evicted.
|
2022-02-22 10:23:09 -05:00
|
|
|
* Must not be used when pools are disabled.
|
2022-01-02 11:19:14 -05:00
|
|
|
*/
|
2022-02-09 10:19:24 -05:00
|
|
|
void pool_evict_from_local_cache(struct pool_head *pool, int full)
|
2022-01-02 11:19:14 -05:00
|
|
|
{
|
|
|
|
|
struct pool_cache_head *ph = &pool->cache[tid];
|
|
|
|
|
|
2022-02-22 10:23:09 -05:00
|
|
|
BUG_ON(pool_debugging & POOL_DBG_NO_CACHE);
|
|
|
|
|
|
2022-02-09 10:19:24 -05:00
|
|
|
while ((ph->count && full) ||
|
|
|
|
|
(ph->count >= CONFIG_HAP_POOL_CLUSTER_SIZE &&
|
|
|
|
|
ph->count >= 16 + pool_cache_count / 8 &&
|
|
|
|
|
pool_cache_bytes > CONFIG_HAP_POOL_CACHE_SIZE * 3 / 4)) {
|
2022-01-02 11:24:55 -05:00
|
|
|
pool_evict_last_items(pool, ph, CONFIG_HAP_POOL_CLUSTER_SIZE);
|
2021-04-19 02:14:03 -04:00
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2021-04-18 04:23:02 -04:00
|
|
|
/* Evicts some of the oldest objects from the local cache, pushing them to the
|
2022-02-22 10:23:09 -05:00
|
|
|
* global pool. Must not be used when pools are disabled.
|
2021-04-18 04:23:02 -04:00
|
|
|
*/
|
|
|
|
|
void pool_evict_from_local_caches()
|
|
|
|
|
{
|
|
|
|
|
struct pool_cache_item *item;
|
|
|
|
|
struct pool_cache_head *ph;
|
|
|
|
|
struct pool_head *pool;
|
|
|
|
|
|
2022-02-22 10:23:09 -05:00
|
|
|
BUG_ON(pool_debugging & POOL_DBG_NO_CACHE);
|
|
|
|
|
|
2021-04-18 04:23:02 -04:00
|
|
|
do {
|
2021-09-30 13:02:18 -04:00
|
|
|
item = LIST_PREV(&th_ctx->pool_lru_head, struct pool_cache_item *, by_lru);
|
2022-02-09 10:23:55 -05:00
|
|
|
BUG_ON(&item->by_lru == &th_ctx->pool_lru_head);
|
2021-04-18 04:23:02 -04:00
|
|
|
/* note: by definition we remove oldest objects so they also are the
|
|
|
|
|
* oldest in their own pools, thus their next is the pool's head.
|
|
|
|
|
*/
|
|
|
|
|
ph = LIST_NEXT(&item->by_pool, struct pool_cache_head *, list);
|
2022-02-09 10:33:22 -05:00
|
|
|
BUG_ON(ph->tid != tid);
|
|
|
|
|
|
2021-04-18 04:23:02 -04:00
|
|
|
pool = container_of(ph - tid, struct pool_head, cache);
|
2022-02-09 10:33:22 -05:00
|
|
|
BUG_ON(pool != ph->pool);
|
|
|
|
|
|
2022-01-02 11:24:55 -05:00
|
|
|
pool_evict_last_items(pool, ph, CONFIG_HAP_POOL_CLUSTER_SIZE);
|
2021-04-18 04:23:02 -04:00
|
|
|
} while (pool_cache_bytes > CONFIG_HAP_POOL_CACHE_SIZE * 7 / 8);
|
|
|
|
|
}
|
|
|
|
|
|
2021-04-19 05:49:26 -04:00
|
|
|
/* Frees an object to the local cache, possibly pushing oldest objects to the
|
|
|
|
|
* shared cache, which itself may decide to release some of them to the OS.
|
|
|
|
|
* While it is unspecified what the object becomes past this point, it is
|
2022-01-24 09:52:51 -05:00
|
|
|
* guaranteed to be released from the users' perpective. A caller address may
|
2022-02-22 10:23:09 -05:00
|
|
|
* be passed and stored into the area when DEBUG_POOL_TRACING is set. Must not
|
|
|
|
|
* be used with pools disabled.
|
2021-04-19 05:49:26 -04:00
|
|
|
*/
|
2022-01-24 09:51:50 -05:00
|
|
|
void pool_put_to_cache(struct pool_head *pool, void *ptr, const void *caller)
|
2021-04-19 05:49:26 -04:00
|
|
|
{
|
|
|
|
|
struct pool_cache_item *item = (struct pool_cache_item *)ptr;
|
|
|
|
|
struct pool_cache_head *ph = &pool->cache[tid];
|
|
|
|
|
|
2022-02-22 10:23:09 -05:00
|
|
|
BUG_ON(pool_debugging & POOL_DBG_NO_CACHE);
|
|
|
|
|
|
2021-04-21 01:32:39 -04:00
|
|
|
LIST_INSERT(&ph->list, &item->by_pool);
|
2021-09-30 13:02:18 -04:00
|
|
|
LIST_INSERT(&th_ctx->pool_lru_head, &item->by_lru);
|
2022-01-24 09:52:51 -05:00
|
|
|
POOL_DEBUG_TRACE_CALLER(pool, item, caller);
|
2021-04-19 05:49:26 -04:00
|
|
|
ph->count++;
|
2022-02-21 12:42:53 -05:00
|
|
|
if (unlikely(pool_debugging & POOL_DBG_INTEGRITY))
|
|
|
|
|
pool_fill_pattern(ph, item, pool->size);
|
2021-04-19 05:49:26 -04:00
|
|
|
pool_cache_count++;
|
|
|
|
|
pool_cache_bytes += pool->size;
|
|
|
|
|
|
|
|
|
|
if (unlikely(pool_cache_bytes > CONFIG_HAP_POOL_CACHE_SIZE * 3 / 4)) {
|
2022-01-02 11:24:55 -05:00
|
|
|
if (ph->count >= 16 + pool_cache_count / 8 + CONFIG_HAP_POOL_CLUSTER_SIZE)
|
2022-02-09 10:19:24 -05:00
|
|
|
pool_evict_from_local_cache(pool, 0);
|
2021-04-19 05:49:26 -04:00
|
|
|
if (pool_cache_bytes > CONFIG_HAP_POOL_CACHE_SIZE)
|
|
|
|
|
pool_evict_from_local_caches();
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2021-12-30 11:09:31 -05:00
|
|
|
/* Tries to refill the local cache <pch> from the shared one for pool <pool>.
|
|
|
|
|
* This is only used when pools are in use and shared pools are enabled. No
|
|
|
|
|
* malloc() is attempted, and poisonning is never performed. The purpose is to
|
|
|
|
|
* get the fastest possible refilling so that the caller can easily check if
|
2022-02-22 10:23:09 -05:00
|
|
|
* the cache has enough objects for its use. Must not be used when pools are
|
|
|
|
|
* disabled.
|
2021-12-30 11:09:31 -05:00
|
|
|
*/
|
|
|
|
|
void pool_refill_local_from_shared(struct pool_head *pool, struct pool_cache_head *pch)
|
|
|
|
|
{
|
|
|
|
|
struct pool_cache_item *item;
|
2022-01-02 08:35:57 -05:00
|
|
|
struct pool_item *ret, *down;
|
|
|
|
|
uint count;
|
2021-12-30 11:09:31 -05:00
|
|
|
|
2022-02-22 10:23:09 -05:00
|
|
|
BUG_ON(pool_debugging & POOL_DBG_NO_CACHE);
|
|
|
|
|
|
2021-12-30 11:09:31 -05:00
|
|
|
/* we'll need to reference the first element to figure the next one. We
|
|
|
|
|
* must temporarily lock it so that nobody allocates then releases it,
|
|
|
|
|
* or the dereference could fail.
|
|
|
|
|
*/
|
|
|
|
|
ret = _HA_ATOMIC_LOAD(&pool->free_list);
|
|
|
|
|
do {
|
|
|
|
|
while (unlikely(ret == POOL_BUSY)) {
|
|
|
|
|
__ha_cpu_relax();
|
|
|
|
|
ret = _HA_ATOMIC_LOAD(&pool->free_list);
|
|
|
|
|
}
|
|
|
|
|
if (ret == NULL)
|
|
|
|
|
return;
|
|
|
|
|
} while (unlikely((ret = _HA_ATOMIC_XCHG(&pool->free_list, POOL_BUSY)) == POOL_BUSY));
|
|
|
|
|
|
|
|
|
|
if (unlikely(ret == NULL)) {
|
|
|
|
|
HA_ATOMIC_STORE(&pool->free_list, NULL);
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* this releases the lock */
|
2022-01-01 12:22:20 -05:00
|
|
|
HA_ATOMIC_STORE(&pool->free_list, ret->next);
|
2021-12-30 11:09:31 -05:00
|
|
|
|
2022-01-02 08:35:57 -05:00
|
|
|
/* now store the retrieved object(s) into the local cache */
|
|
|
|
|
count = 0;
|
|
|
|
|
for (; ret; ret = down) {
|
|
|
|
|
down = ret->down;
|
|
|
|
|
item = (struct pool_cache_item *)ret;
|
2022-01-25 09:56:50 -05:00
|
|
|
POOL_DEBUG_TRACE_CALLER(pool, item, NULL);
|
2022-01-02 08:35:57 -05:00
|
|
|
LIST_INSERT(&pch->list, &item->by_pool);
|
|
|
|
|
LIST_INSERT(&th_ctx->pool_lru_head, &item->by_lru);
|
|
|
|
|
count++;
|
2022-02-21 12:42:53 -05:00
|
|
|
if (unlikely(pool_debugging & POOL_DBG_INTEGRITY))
|
|
|
|
|
pool_fill_pattern(pch, item, pool->size);
|
2022-01-02 08:35:57 -05:00
|
|
|
}
|
|
|
|
|
HA_ATOMIC_ADD(&pool->used, count);
|
|
|
|
|
pch->count += count;
|
|
|
|
|
pool_cache_count += count;
|
|
|
|
|
pool_cache_bytes += count * pool->size;
|
2021-12-30 11:09:31 -05:00
|
|
|
}
|
|
|
|
|
|
2022-01-02 09:15:54 -05:00
|
|
|
/* Adds pool item cluster <item> to the shared cache, which contains <count>
|
|
|
|
|
* elements. The caller is advised to first check using pool_releasable() if
|
|
|
|
|
* it's wise to add this series of objects there. Both the pool and the item's
|
|
|
|
|
* head must be valid.
|
2021-12-30 11:37:33 -05:00
|
|
|
*/
|
2022-01-02 09:15:54 -05:00
|
|
|
void pool_put_to_shared_cache(struct pool_head *pool, struct pool_item *item, uint count)
|
2021-12-30 11:37:33 -05:00
|
|
|
{
|
2022-01-01 12:22:20 -05:00
|
|
|
struct pool_item *free_list;
|
2021-12-30 11:37:33 -05:00
|
|
|
|
2022-01-02 09:15:54 -05:00
|
|
|
_HA_ATOMIC_SUB(&pool->used, count);
|
2021-12-30 11:37:33 -05:00
|
|
|
free_list = _HA_ATOMIC_LOAD(&pool->free_list);
|
|
|
|
|
do {
|
|
|
|
|
while (unlikely(free_list == POOL_BUSY)) {
|
|
|
|
|
__ha_cpu_relax();
|
|
|
|
|
free_list = _HA_ATOMIC_LOAD(&pool->free_list);
|
|
|
|
|
}
|
2022-01-01 12:22:20 -05:00
|
|
|
_HA_ATOMIC_STORE(&item->next, free_list);
|
2021-12-30 11:37:33 -05:00
|
|
|
__ha_barrier_atomic_store();
|
|
|
|
|
} while (!_HA_ATOMIC_CAS(&pool->free_list, &free_list, item));
|
|
|
|
|
__ha_barrier_atomic_store();
|
|
|
|
|
swrate_add(&pool->needed_avg, POOL_AVG_SAMPLES, pool->used);
|
|
|
|
|
}
|
|
|
|
|
|
2018-01-24 12:38:31 -05:00
|
|
|
/*
|
|
|
|
|
* This function frees whatever can be freed in pool <pool>.
|
|
|
|
|
*/
|
|
|
|
|
void pool_flush(struct pool_head *pool)
|
|
|
|
|
{
|
2022-01-02 08:35:57 -05:00
|
|
|
struct pool_item *next, *temp, *down;
|
2018-01-24 12:38:31 -05:00
|
|
|
|
2022-02-22 10:23:09 -05:00
|
|
|
if (!pool || (pool_debugging & (POOL_DBG_NO_CACHE|POOL_DBG_NO_GLOBAL)))
|
2018-01-24 12:38:31 -05:00
|
|
|
return;
|
BUG/MAJOR: pools: fix possible race with free() in the lockless variant
In GH issue #1275, Fabiano Nunes Parente provided a nicely detailed
report showing reproducible crashes under musl. Musl is one of the libs
coming with a simple allocator for which we prefer to keep the shared
cache. On x86 we have a DWCAS so the lockless implementation is enabled
for such libraries.
And this implementation has had a small race since day one: the allocator
will need to read the first object's <next> pointer to place it into the
free list's head. If another thread picks the same element and immediately
releases it, while both the local and the shared pools are too crowded, it
will be freed to the OS. If the libc's allocator immediately releases it,
the memory area is unmapped and we can have a crash while trying to read
that pointer. However there is no problem as long as the item remains
mapped in memory because whatever value found there will not be placed
into the head since the counter will have changed.
The probability for this to happen is extremely low, but as analyzed by
Fabiano, it increases with the buffer size. On 16 threads it's relatively
easy to reproduce with 2MB buffers above 200k req/s, where it should
happen within the first 20 seconds of traffic usually.
This is a structural issue for which there are two non-trivial solutions:
- place a read lock in the alloc call and a barrier made of lock/unlock
in the free() call to force to serialize operations; this will have
a big performance impact since free() is already one of the contention
points;
- change the allocator to use a self-locked head, similar to what is
done in the MT_LISTS. This requires two memory writes to the head
instead of a single one, thus the overhead is exactly one memory
write during alloc and one during free;
This patch implements the second option. A new POOL_DUMMY pointer was
defined for the locked pointer value, allowing to both read and lock it
with a single xchg call. The code was carefully optimized so that the
locked period remains the shortest possible and that bus writes are
avoided as much as possible whenever the lock is held.
Tests show that while a bit slower than the original lockless
implementation on large buffers (2MB), it's 2.6 times faster than both
the no-cache and the locked implementation on such large buffers, and
remains as fast or faster than the all implementations when buffers are
48k or higher. Tests were also run on arm64 with similar results.
Note that this code is not used on modern libcs featuring a fast allocator.
A nice benefit of this change is that since it removes a dependency on
the DWCAS, it will be possible to remove the locked implementation and
replace it with this one, that is then usable on all systems, thus
significantly increasing their performance with large buffers.
Given that lockless pools were introduced in 1.9 (not supported anymore),
this patch will have to be backported as far as 2.0. The code changed
several times in this area and is subject to many ifdefs which will
complicate the backport. What is important is to remove all the DWCAS
code from the shared cache alloc/free lockless code and replace it with
this one. The pool_flush() code is basically the same code as the
allocator, retrieving the whole list at once. If in doubt regarding what
barriers to use in older versions, it's safe to use the generic ones.
This patch depends on the following previous commits:
- MINOR: pools: do not maintain the lock during pool_flush()
- MINOR: pools: call malloc_trim() under thread isolation
- MEDIUM: pools: use a single pool_gc() function for locked and lockless
The last one also removes one occurrence of an unneeded DWCAS in the
code that was incompatible with this fix. The removal of the now unused
seq field will happen in a future patch.
Many thanks to Fabiano for his detailed report, and to Olivier for
his help on this issue.
2021-06-09 12:59:58 -04:00
|
|
|
|
|
|
|
|
/* The loop below atomically detaches the head of the free list and
|
|
|
|
|
* replaces it with a NULL. Then the list can be released.
|
|
|
|
|
*/
|
|
|
|
|
next = pool->free_list;
|
2018-01-24 12:38:31 -05:00
|
|
|
do {
|
BUG/MAJOR: pools: fix possible race with free() in the lockless variant
In GH issue #1275, Fabiano Nunes Parente provided a nicely detailed
report showing reproducible crashes under musl. Musl is one of the libs
coming with a simple allocator for which we prefer to keep the shared
cache. On x86 we have a DWCAS so the lockless implementation is enabled
for such libraries.
And this implementation has had a small race since day one: the allocator
will need to read the first object's <next> pointer to place it into the
free list's head. If another thread picks the same element and immediately
releases it, while both the local and the shared pools are too crowded, it
will be freed to the OS. If the libc's allocator immediately releases it,
the memory area is unmapped and we can have a crash while trying to read
that pointer. However there is no problem as long as the item remains
mapped in memory because whatever value found there will not be placed
into the head since the counter will have changed.
The probability for this to happen is extremely low, but as analyzed by
Fabiano, it increases with the buffer size. On 16 threads it's relatively
easy to reproduce with 2MB buffers above 200k req/s, where it should
happen within the first 20 seconds of traffic usually.
This is a structural issue for which there are two non-trivial solutions:
- place a read lock in the alloc call and a barrier made of lock/unlock
in the free() call to force to serialize operations; this will have
a big performance impact since free() is already one of the contention
points;
- change the allocator to use a self-locked head, similar to what is
done in the MT_LISTS. This requires two memory writes to the head
instead of a single one, thus the overhead is exactly one memory
write during alloc and one during free;
This patch implements the second option. A new POOL_DUMMY pointer was
defined for the locked pointer value, allowing to both read and lock it
with a single xchg call. The code was carefully optimized so that the
locked period remains the shortest possible and that bus writes are
avoided as much as possible whenever the lock is held.
Tests show that while a bit slower than the original lockless
implementation on large buffers (2MB), it's 2.6 times faster than both
the no-cache and the locked implementation on such large buffers, and
remains as fast or faster than the all implementations when buffers are
48k or higher. Tests were also run on arm64 with similar results.
Note that this code is not used on modern libcs featuring a fast allocator.
A nice benefit of this change is that since it removes a dependency on
the DWCAS, it will be possible to remove the locked implementation and
replace it with this one, that is then usable on all systems, thus
significantly increasing their performance with large buffers.
Given that lockless pools were introduced in 1.9 (not supported anymore),
this patch will have to be backported as far as 2.0. The code changed
several times in this area and is subject to many ifdefs which will
complicate the backport. What is important is to remove all the DWCAS
code from the shared cache alloc/free lockless code and replace it with
this one. The pool_flush() code is basically the same code as the
allocator, retrieving the whole list at once. If in doubt regarding what
barriers to use in older versions, it's safe to use the generic ones.
This patch depends on the following previous commits:
- MINOR: pools: do not maintain the lock during pool_flush()
- MINOR: pools: call malloc_trim() under thread isolation
- MEDIUM: pools: use a single pool_gc() function for locked and lockless
The last one also removes one occurrence of an unneeded DWCAS in the
code that was incompatible with this fix. The removal of the now unused
seq field will happen in a future patch.
Many thanks to Fabiano for his detailed report, and to Olivier for
his help on this issue.
2021-06-09 12:59:58 -04:00
|
|
|
while (unlikely(next == POOL_BUSY)) {
|
|
|
|
|
__ha_cpu_relax();
|
|
|
|
|
next = _HA_ATOMIC_LOAD(&pool->free_list);
|
|
|
|
|
}
|
|
|
|
|
if (next == NULL)
|
|
|
|
|
return;
|
|
|
|
|
} while (unlikely((next = _HA_ATOMIC_XCHG(&pool->free_list, POOL_BUSY)) == POOL_BUSY));
|
|
|
|
|
_HA_ATOMIC_STORE(&pool->free_list, NULL);
|
2019-03-08 12:53:35 -05:00
|
|
|
__ha_barrier_atomic_store();
|
BUG/MAJOR: pools: fix possible race with free() in the lockless variant
In GH issue #1275, Fabiano Nunes Parente provided a nicely detailed
report showing reproducible crashes under musl. Musl is one of the libs
coming with a simple allocator for which we prefer to keep the shared
cache. On x86 we have a DWCAS so the lockless implementation is enabled
for such libraries.
And this implementation has had a small race since day one: the allocator
will need to read the first object's <next> pointer to place it into the
free list's head. If another thread picks the same element and immediately
releases it, while both the local and the shared pools are too crowded, it
will be freed to the OS. If the libc's allocator immediately releases it,
the memory area is unmapped and we can have a crash while trying to read
that pointer. However there is no problem as long as the item remains
mapped in memory because whatever value found there will not be placed
into the head since the counter will have changed.
The probability for this to happen is extremely low, but as analyzed by
Fabiano, it increases with the buffer size. On 16 threads it's relatively
easy to reproduce with 2MB buffers above 200k req/s, where it should
happen within the first 20 seconds of traffic usually.
This is a structural issue for which there are two non-trivial solutions:
- place a read lock in the alloc call and a barrier made of lock/unlock
in the free() call to force to serialize operations; this will have
a big performance impact since free() is already one of the contention
points;
- change the allocator to use a self-locked head, similar to what is
done in the MT_LISTS. This requires two memory writes to the head
instead of a single one, thus the overhead is exactly one memory
write during alloc and one during free;
This patch implements the second option. A new POOL_DUMMY pointer was
defined for the locked pointer value, allowing to both read and lock it
with a single xchg call. The code was carefully optimized so that the
locked period remains the shortest possible and that bus writes are
avoided as much as possible whenever the lock is held.
Tests show that while a bit slower than the original lockless
implementation on large buffers (2MB), it's 2.6 times faster than both
the no-cache and the locked implementation on such large buffers, and
remains as fast or faster than the all implementations when buffers are
48k or higher. Tests were also run on arm64 with similar results.
Note that this code is not used on modern libcs featuring a fast allocator.
A nice benefit of this change is that since it removes a dependency on
the DWCAS, it will be possible to remove the locked implementation and
replace it with this one, that is then usable on all systems, thus
significantly increasing their performance with large buffers.
Given that lockless pools were introduced in 1.9 (not supported anymore),
this patch will have to be backported as far as 2.0. The code changed
several times in this area and is subject to many ifdefs which will
complicate the backport. What is important is to remove all the DWCAS
code from the shared cache alloc/free lockless code and replace it with
this one. The pool_flush() code is basically the same code as the
allocator, retrieving the whole list at once. If in doubt regarding what
barriers to use in older versions, it's safe to use the generic ones.
This patch depends on the following previous commits:
- MINOR: pools: do not maintain the lock during pool_flush()
- MINOR: pools: call malloc_trim() under thread isolation
- MEDIUM: pools: use a single pool_gc() function for locked and lockless
The last one also removes one occurrence of an unneeded DWCAS in the
code that was incompatible with this fix. The removal of the now unused
seq field will happen in a future patch.
Many thanks to Fabiano for his detailed report, and to Olivier for
his help on this issue.
2021-06-09 12:59:58 -04:00
|
|
|
|
2018-01-24 12:38:31 -05:00
|
|
|
while (next) {
|
|
|
|
|
temp = next;
|
2022-01-01 12:22:20 -05:00
|
|
|
next = temp->next;
|
2022-01-02 08:35:57 -05:00
|
|
|
for (; temp; temp = down) {
|
|
|
|
|
down = temp->down;
|
|
|
|
|
pool_put_to_os(pool, temp);
|
|
|
|
|
}
|
2018-01-24 12:38:31 -05:00
|
|
|
}
|
2021-06-10 00:54:22 -04:00
|
|
|
/* here, we should have pool->allocated == pool->used */
|
2018-01-24 12:38:31 -05:00
|
|
|
}
|
|
|
|
|
|
2007-05-13 13:38:49 -04:00
|
|
|
/*
|
|
|
|
|
* This function frees whatever can be freed in all pools, but respecting
|
2020-04-24 00:15:24 -04:00
|
|
|
* the minimum thresholds imposed by owners. It makes sure to be alone to
|
|
|
|
|
* run by using thread_isolate(). <pool_ctx> is unused.
|
2007-05-13 13:38:49 -04:00
|
|
|
*/
|
2017-11-24 11:34:44 -05:00
|
|
|
void pool_gc(struct pool_head *pool_ctx)
|
2007-05-13 13:38:49 -04:00
|
|
|
{
|
|
|
|
|
struct pool_head *entry;
|
2020-04-24 00:15:24 -04:00
|
|
|
int isolated = thread_isolated();
|
2009-04-20 20:17:45 -04:00
|
|
|
|
2020-04-24 00:15:24 -04:00
|
|
|
if (!isolated)
|
|
|
|
|
thread_isolate();
|
2009-04-20 20:17:45 -04:00
|
|
|
|
2007-05-13 13:38:49 -04:00
|
|
|
list_for_each_entry(entry, &pools, list) {
|
2022-01-02 08:35:57 -05:00
|
|
|
struct pool_item *temp, *down;
|
2022-01-01 12:22:20 -05:00
|
|
|
|
2020-03-12 14:05:39 -04:00
|
|
|
while (entry->free_list &&
|
2014-12-22 15:40:55 -05:00
|
|
|
(int)(entry->allocated - entry->used) > (int)entry->minavail) {
|
2020-03-12 14:05:39 -04:00
|
|
|
temp = entry->free_list;
|
2022-01-01 12:22:20 -05:00
|
|
|
entry->free_list = temp->next;
|
2022-01-02 08:35:57 -05:00
|
|
|
for (; temp; temp = down) {
|
|
|
|
|
down = temp->down;
|
|
|
|
|
pool_put_to_os(entry, temp);
|
|
|
|
|
}
|
2007-05-13 13:38:49 -04:00
|
|
|
}
|
|
|
|
|
}
|
2017-08-29 03:52:38 -04:00
|
|
|
|
2021-09-15 04:38:21 -04:00
|
|
|
trim_all_pools();
|
2021-06-10 02:40:16 -04:00
|
|
|
|
2020-04-24 00:15:24 -04:00
|
|
|
if (!isolated)
|
|
|
|
|
thread_release();
|
2007-05-13 13:38:49 -04:00
|
|
|
}
|
2021-04-18 04:23:02 -04:00
|
|
|
|
2022-01-24 10:09:29 -05:00
|
|
|
/*
|
|
|
|
|
* Returns a pointer to type <type> taken from the pool <pool_type> or
|
|
|
|
|
* dynamically allocated. In the first case, <pool_type> is updated to point to
|
|
|
|
|
* the next element in the list. <flags> is a binary-OR of POOL_F_* flags.
|
|
|
|
|
* Prefer using pool_alloc() which does the right thing without flags.
|
|
|
|
|
*/
|
|
|
|
|
void *__pool_alloc(struct pool_head *pool, unsigned int flags)
|
|
|
|
|
{
|
|
|
|
|
void *p = NULL;
|
2022-02-23 04:10:33 -05:00
|
|
|
void *caller = __builtin_return_address(0);
|
2022-01-24 10:09:29 -05:00
|
|
|
|
2022-02-21 11:16:22 -05:00
|
|
|
if (unlikely(pool_debugging & POOL_DBG_FAIL_ALLOC))
|
|
|
|
|
if (!(flags & POOL_F_NO_FAIL) && mem_should_fail(pool))
|
|
|
|
|
return NULL;
|
2022-01-24 10:09:29 -05:00
|
|
|
|
2022-02-22 10:23:09 -05:00
|
|
|
if (likely(!(pool_debugging & POOL_DBG_NO_CACHE)) && !p)
|
2022-01-24 09:51:50 -05:00
|
|
|
p = pool_get_from_cache(pool, caller);
|
2022-02-22 10:23:09 -05:00
|
|
|
|
2022-01-24 10:09:29 -05:00
|
|
|
if (unlikely(!p))
|
|
|
|
|
p = pool_alloc_nocache(pool);
|
|
|
|
|
|
|
|
|
|
if (likely(p)) {
|
2022-08-17 03:12:53 -04:00
|
|
|
#ifdef USE_MEMORY_PROFILING
|
|
|
|
|
if (unlikely(profiling & HA_PROF_MEMORY)) {
|
|
|
|
|
struct memprof_stats *bin;
|
|
|
|
|
|
|
|
|
|
bin = memprof_get_bin(__builtin_return_address(0), MEMPROF_METH_P_ALLOC);
|
|
|
|
|
_HA_ATOMIC_ADD(&bin->alloc_calls, 1);
|
|
|
|
|
_HA_ATOMIC_ADD(&bin->alloc_tot, pool->size);
|
|
|
|
|
}
|
|
|
|
|
#endif
|
2022-01-24 10:09:29 -05:00
|
|
|
if (unlikely(flags & POOL_F_MUST_ZERO))
|
|
|
|
|
memset(p, 0, pool->size);
|
2022-02-23 08:15:18 -05:00
|
|
|
else if (unlikely(!(flags & POOL_F_NO_POISON) && (pool_debugging & POOL_DBG_POISON)))
|
2022-01-24 10:09:29 -05:00
|
|
|
memset(p, mem_poison_byte, pool->size);
|
|
|
|
|
}
|
|
|
|
|
return p;
|
|
|
|
|
}
|
|
|
|
|
|
2022-01-24 05:51:43 -05:00
|
|
|
/*
|
|
|
|
|
* Puts a memory area back to the corresponding pool. <ptr> be valid. Using
|
|
|
|
|
* pool_free() is preferred.
|
|
|
|
|
*/
|
|
|
|
|
void __pool_free(struct pool_head *pool, void *ptr)
|
|
|
|
|
{
|
2022-02-23 04:10:33 -05:00
|
|
|
const void *caller = __builtin_return_address(0);
|
2022-01-24 09:51:50 -05:00
|
|
|
|
2022-01-24 05:51:43 -05:00
|
|
|
/* we'll get late corruption if we refill to the wrong pool or double-free */
|
|
|
|
|
POOL_DEBUG_CHECK_MARK(pool, ptr);
|
2022-02-09 10:49:16 -05:00
|
|
|
POOL_DEBUG_RESET_MARK(pool, ptr);
|
2022-02-22 10:23:09 -05:00
|
|
|
|
2022-08-17 03:12:53 -04:00
|
|
|
#ifdef USE_MEMORY_PROFILING
|
|
|
|
|
if (unlikely(profiling & HA_PROF_MEMORY) && ptr) {
|
|
|
|
|
struct memprof_stats *bin;
|
|
|
|
|
|
|
|
|
|
bin = memprof_get_bin(__builtin_return_address(0), MEMPROF_METH_P_FREE);
|
|
|
|
|
_HA_ATOMIC_ADD(&bin->free_calls, 1);
|
|
|
|
|
_HA_ATOMIC_ADD(&bin->free_tot, pool->size);
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
2022-02-22 10:23:09 -05:00
|
|
|
if (unlikely(pool_debugging & POOL_DBG_NO_CACHE)) {
|
|
|
|
|
pool_free_nocache(pool, ptr);
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
2022-01-24 09:51:50 -05:00
|
|
|
pool_put_to_cache(pool, ptr, caller);
|
2022-01-24 05:51:43 -05:00
|
|
|
}
|
|
|
|
|
|
2021-10-05 12:14:11 -04:00
|
|
|
|
|
|
|
|
#ifdef DEBUG_UAF
|
|
|
|
|
|
|
|
|
|
/************* use-after-free allocator *************/
|
|
|
|
|
|
|
|
|
|
/* allocates an area of size <size> and returns it. The semantics are similar
|
|
|
|
|
* to those of malloc(). However the allocation is rounded up to 4kB so that a
|
|
|
|
|
* full page is allocated. This ensures the object can be freed alone so that
|
|
|
|
|
* future dereferences are easily detected. The returned object is always
|
|
|
|
|
* 16-bytes aligned to avoid issues with unaligned structure objects. In case
|
|
|
|
|
* some padding is added, the area's start address is copied at the end of the
|
|
|
|
|
* padding to help detect underflows.
|
|
|
|
|
*/
|
|
|
|
|
void *pool_alloc_area_uaf(size_t size)
|
|
|
|
|
{
|
|
|
|
|
size_t pad = (4096 - size) & 0xFF0;
|
|
|
|
|
void *ret;
|
|
|
|
|
|
|
|
|
|
ret = mmap(NULL, (size + 4095) & -4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
|
|
|
|
|
if (ret != MAP_FAILED) {
|
|
|
|
|
/* let's dereference the page before returning so that the real
|
|
|
|
|
* allocation in the system is performed without holding the lock.
|
|
|
|
|
*/
|
|
|
|
|
*(int *)ret = 0;
|
|
|
|
|
if (pad >= sizeof(void *))
|
|
|
|
|
*(void **)(ret + pad - sizeof(void *)) = ret + pad;
|
|
|
|
|
ret += pad;
|
|
|
|
|
} else {
|
|
|
|
|
ret = NULL;
|
|
|
|
|
}
|
|
|
|
|
return ret;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* frees an area <area> of size <size> allocated by pool_alloc_area(). The
|
|
|
|
|
* semantics are identical to free() except that the size must absolutely match
|
|
|
|
|
* the one passed to pool_alloc_area(). In case some padding is added, the
|
|
|
|
|
* area's start address is compared to the one at the end of the padding, and
|
|
|
|
|
* a segfault is triggered if they don't match, indicating an underflow.
|
|
|
|
|
*/
|
|
|
|
|
void pool_free_area_uaf(void *area, size_t size)
|
|
|
|
|
{
|
|
|
|
|
size_t pad = (4096 - size) & 0xFF0;
|
|
|
|
|
|
|
|
|
|
if (pad >= sizeof(void *) && *(void **)(area - sizeof(void *)) != area)
|
|
|
|
|
ABORT_NOW();
|
|
|
|
|
|
|
|
|
|
munmap(area - pad, (size + 4095) & -4096);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#endif /* DEBUG_UAF */
|
|
|
|
|
|
2007-05-13 13:38:49 -04:00
|
|
|
/*
|
2007-06-16 17:19:53 -04:00
|
|
|
* This function destroys a pool by freeing it completely, unless it's still
|
|
|
|
|
* in use. This should be called only under extreme circumstances. It always
|
|
|
|
|
* returns NULL if the resulting pool is empty, easing the clearing of the old
|
|
|
|
|
* pointer, otherwise it returns the pool.
|
|
|
|
|
* .
|
2007-05-13 13:38:49 -04:00
|
|
|
*/
|
2017-11-24 11:34:44 -05:00
|
|
|
void *pool_destroy(struct pool_head *pool)
|
2007-05-13 13:38:49 -04:00
|
|
|
{
|
2007-05-13 18:39:29 -04:00
|
|
|
if (pool) {
|
2022-02-22 10:23:09 -05:00
|
|
|
if (!(pool_debugging & POOL_DBG_NO_CACHE))
|
|
|
|
|
pool_evict_from_local_cache(pool, 1);
|
|
|
|
|
|
2017-11-24 11:34:44 -05:00
|
|
|
pool_flush(pool);
|
2007-06-16 17:19:53 -04:00
|
|
|
if (pool->used)
|
|
|
|
|
return pool;
|
|
|
|
|
pool->users--;
|
|
|
|
|
if (!pool->users) {
|
2021-04-21 01:32:39 -04:00
|
|
|
LIST_DELETE(&pool->list);
|
2021-04-16 18:31:38 -04:00
|
|
|
/* note that if used == 0, the cache is empty */
|
2022-03-03 12:31:54 -05:00
|
|
|
free(pool->base_addr);
|
2007-06-16 17:19:53 -04:00
|
|
|
}
|
2007-05-13 18:39:29 -04:00
|
|
|
}
|
|
|
|
|
return NULL;
|
2007-05-13 13:38:49 -04:00
|
|
|
}
|
|
|
|
|
|
2018-11-26 09:57:34 -05:00
|
|
|
/* This destroys all pools on exit. It is *not* thread safe. */
|
|
|
|
|
void pool_destroy_all()
|
|
|
|
|
{
|
|
|
|
|
struct pool_head *entry, *back;
|
|
|
|
|
|
2022-04-27 05:33:13 -04:00
|
|
|
list_for_each_entry_safe(entry, back, &pools, list) {
|
|
|
|
|
/* there's only one occurrence of each pool in the list,
|
|
|
|
|
* and we're existing instead of looping on the whole
|
|
|
|
|
* list just to decrement users, force it to 1 here.
|
|
|
|
|
*/
|
|
|
|
|
entry->users = 1;
|
2018-11-26 09:57:34 -05:00
|
|
|
pool_destroy(entry);
|
2022-04-27 05:33:13 -04:00
|
|
|
}
|
2018-11-26 09:57:34 -05:00
|
|
|
}
|
|
|
|
|
|
2014-01-28 10:49:56 -05:00
|
|
|
/* This function dumps memory usage information into the trash buffer. */
|
|
|
|
|
void dump_pools_to_trash()
|
2007-05-13 12:26:08 -04:00
|
|
|
{
|
|
|
|
|
struct pool_head *entry;
|
|
|
|
|
unsigned long allocated, used;
|
|
|
|
|
int nbpools;
|
2021-10-07 10:29:31 -04:00
|
|
|
unsigned long cached_bytes = 0;
|
|
|
|
|
uint cached = 0;
|
2007-05-13 12:26:08 -04:00
|
|
|
|
|
|
|
|
allocated = used = nbpools = 0;
|
2014-01-28 10:49:56 -05:00
|
|
|
chunk_printf(&trash, "Dumping pools usage. Use SIGQUIT to flush them.\n");
|
2007-05-13 12:26:08 -04:00
|
|
|
list_for_each_entry(entry, &pools, list) {
|
2022-02-22 10:23:09 -05:00
|
|
|
if (!(pool_debugging & POOL_DBG_NO_CACHE)) {
|
|
|
|
|
int i;
|
|
|
|
|
for (cached = i = 0; i < global.nbthread; i++)
|
|
|
|
|
cached += entry->cache[i].count;
|
|
|
|
|
cached_bytes += cached * entry->size;
|
|
|
|
|
}
|
2021-10-07 10:29:31 -04:00
|
|
|
chunk_appendf(&trash, " - Pool %s (%u bytes) : %u allocated (%u bytes), %u used"
|
|
|
|
|
" (~%u by thread caches)"
|
|
|
|
|
", needed_avg %u, %u failures, %u users, @%p%s\n",
|
|
|
|
|
entry->name, entry->size, entry->allocated,
|
|
|
|
|
entry->size * entry->allocated, entry->used,
|
|
|
|
|
cached,
|
|
|
|
|
swrate_avg(entry->needed_avg, POOL_AVG_SAMPLES), entry->failed,
|
|
|
|
|
entry->users, entry,
|
|
|
|
|
(entry->flags & MEM_F_SHARED) ? " [SHARED]" : "");
|
2007-05-13 12:26:08 -04:00
|
|
|
|
|
|
|
|
allocated += entry->allocated * entry->size;
|
|
|
|
|
used += entry->used * entry->size;
|
|
|
|
|
nbpools++;
|
|
|
|
|
}
|
2021-10-07 10:29:31 -04:00
|
|
|
chunk_appendf(&trash, "Total: %d pools, %lu bytes allocated, %lu used"
|
|
|
|
|
" (~%lu by thread caches)"
|
|
|
|
|
".\n",
|
2022-02-22 10:23:09 -05:00
|
|
|
nbpools, allocated, used, cached_bytes
|
2021-10-07 10:29:31 -04:00
|
|
|
);
|
2007-05-13 12:26:08 -04:00
|
|
|
}
|
|
|
|
|
|
2014-01-28 10:49:56 -05:00
|
|
|
/* Dump statistics on pools usage. */
|
|
|
|
|
void dump_pools(void)
|
|
|
|
|
{
|
|
|
|
|
dump_pools_to_trash();
|
2018-07-13 04:54:26 -04:00
|
|
|
qfprintf(stderr, "%s", trash.area);
|
2014-01-28 10:49:56 -05:00
|
|
|
}
|
|
|
|
|
|
2015-10-28 11:24:21 -04:00
|
|
|
/* This function returns the total number of failed pool allocations */
|
|
|
|
|
int pool_total_failures()
|
|
|
|
|
{
|
|
|
|
|
struct pool_head *entry;
|
|
|
|
|
int failed = 0;
|
|
|
|
|
|
|
|
|
|
list_for_each_entry(entry, &pools, list)
|
|
|
|
|
failed += entry->failed;
|
|
|
|
|
return failed;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* This function returns the total amount of memory allocated in pools (in bytes) */
|
|
|
|
|
unsigned long pool_total_allocated()
|
|
|
|
|
{
|
|
|
|
|
struct pool_head *entry;
|
|
|
|
|
unsigned long allocated = 0;
|
|
|
|
|
|
|
|
|
|
list_for_each_entry(entry, &pools, list)
|
|
|
|
|
allocated += entry->allocated * entry->size;
|
|
|
|
|
return allocated;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* This function returns the total amount of memory used in pools (in bytes) */
|
|
|
|
|
unsigned long pool_total_used()
|
|
|
|
|
{
|
|
|
|
|
struct pool_head *entry;
|
|
|
|
|
unsigned long used = 0;
|
|
|
|
|
|
|
|
|
|
list_for_each_entry(entry, &pools, list)
|
|
|
|
|
used += entry->used * entry->size;
|
|
|
|
|
return used;
|
|
|
|
|
}
|
|
|
|
|
|
2022-02-18 12:54:40 -05:00
|
|
|
/* This function parses a string made of a set of debugging features as
|
|
|
|
|
* specified after -dM on the command line, and will set pool_debugging
|
|
|
|
|
* accordingly. On success it returns a strictly positive value. It may zero
|
|
|
|
|
* with the first warning in <err>, -1 with a help message in <err>, or -2 with
|
|
|
|
|
* the first error in <err> return the first error in <err>. <err> is undefined
|
|
|
|
|
* on success, and will be non-null and locally allocated on help/error/warning.
|
|
|
|
|
* The caller must free it. Warnings are used to report features that were not
|
|
|
|
|
* enabled at build time, and errors are used to report unknown features.
|
|
|
|
|
*/
|
|
|
|
|
int pool_parse_debugging(const char *str, char **err)
|
|
|
|
|
{
|
2022-02-23 09:20:53 -05:00
|
|
|
struct ist args;
|
2022-02-18 12:54:40 -05:00
|
|
|
char *end;
|
2022-02-23 09:20:53 -05:00
|
|
|
uint new_dbg;
|
2022-02-18 12:54:40 -05:00
|
|
|
int v;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* if it's empty or starts with a number, it's the mem poisonning byte */
|
|
|
|
|
v = strtol(str, &end, 0);
|
|
|
|
|
if (!*end || *end == ',') {
|
|
|
|
|
mem_poison_byte = *str ? v : 'P';
|
|
|
|
|
if (mem_poison_byte >= 0)
|
|
|
|
|
pool_debugging |= POOL_DBG_POISON;
|
|
|
|
|
else
|
|
|
|
|
pool_debugging &= ~POOL_DBG_POISON;
|
|
|
|
|
str = end;
|
|
|
|
|
}
|
2022-02-23 09:20:53 -05:00
|
|
|
|
|
|
|
|
new_dbg = pool_debugging;
|
|
|
|
|
|
|
|
|
|
for (args = ist(str); istlen(args); args = istadv(istfind(args, ','), 1)) {
|
|
|
|
|
struct ist feat = iststop(args, ',');
|
|
|
|
|
|
|
|
|
|
if (!istlen(feat))
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
if (isteq(feat, ist("help"))) {
|
|
|
|
|
ha_free(err);
|
|
|
|
|
memprintf(err,
|
|
|
|
|
"-dM alone enables memory poisonning with byte 0x50 on allocation. A numeric\n"
|
|
|
|
|
"value may be appended immediately after -dM to use another value (0 supported).\n"
|
|
|
|
|
"Then an optional list of comma-delimited keywords may be appended to set or\n"
|
|
|
|
|
"clear some debugging options ('*' marks the current setting):\n\n"
|
|
|
|
|
" set clear description\n"
|
|
|
|
|
" -----------------+-----------------+-----------------------------------------\n");
|
|
|
|
|
|
|
|
|
|
for (v = 0; dbg_options[v].flg; v++) {
|
|
|
|
|
memprintf(err, "%s %c %-15s|%c %-15s| %s\n",
|
|
|
|
|
*err,
|
|
|
|
|
(pool_debugging & dbg_options[v].flg) ? '*' : ' ',
|
|
|
|
|
dbg_options[v].set,
|
|
|
|
|
(pool_debugging & dbg_options[v].flg) ? ' ' : '*',
|
|
|
|
|
dbg_options[v].clr,
|
|
|
|
|
dbg_options[v].hlp);
|
|
|
|
|
}
|
|
|
|
|
return -1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
for (v = 0; dbg_options[v].flg; v++) {
|
|
|
|
|
if (isteq(feat, ist(dbg_options[v].set))) {
|
|
|
|
|
new_dbg |= dbg_options[v].flg;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
else if (isteq(feat, ist(dbg_options[v].clr))) {
|
|
|
|
|
new_dbg &= ~dbg_options[v].flg;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (!dbg_options[v].flg) {
|
|
|
|
|
memprintf(err, "unknown pool debugging feature <%.*s>", (int)istlen(feat), istptr(feat));
|
|
|
|
|
return -2;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
pool_debugging = new_dbg;
|
2022-02-18 12:54:40 -05:00
|
|
|
return 1;
|
|
|
|
|
}
|
|
|
|
|
|
2022-05-17 13:07:51 -04:00
|
|
|
/* This function dumps memory usage information onto the stream connector's
|
2016-11-18 20:25:36 -05:00
|
|
|
* read buffer. It returns 0 as long as it does not complete, non-zero upon
|
|
|
|
|
* completion. No state is used.
|
|
|
|
|
*/
|
|
|
|
|
static int cli_io_handler_dump_pools(struct appctx *appctx)
|
|
|
|
|
{
|
|
|
|
|
dump_pools_to_trash();
|
2022-05-18 09:07:19 -04:00
|
|
|
if (applet_putchk(appctx, &trash) == -1)
|
2016-11-18 20:25:36 -05:00
|
|
|
return 0;
|
|
|
|
|
return 1;
|
|
|
|
|
}
|
|
|
|
|
|
2018-11-26 05:44:35 -05:00
|
|
|
/* callback used to create early pool <name> of size <size> and store the
|
|
|
|
|
* resulting pointer into <ptr>. If the allocation fails, it quits with after
|
|
|
|
|
* emitting an error message.
|
|
|
|
|
*/
|
|
|
|
|
void create_pool_callback(struct pool_head **ptr, char *name, unsigned int size)
|
|
|
|
|
{
|
|
|
|
|
*ptr = create_pool(name, size, MEM_F_SHARED);
|
|
|
|
|
if (!*ptr) {
|
|
|
|
|
ha_alert("Failed to allocate pool '%s' of size %u : %s. Aborting.\n",
|
|
|
|
|
name, size, strerror(errno));
|
|
|
|
|
exit(1);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2018-11-26 11:09:46 -05:00
|
|
|
/* Initializes all per-thread arrays on startup */
|
|
|
|
|
static void init_pools()
|
|
|
|
|
{
|
2021-04-16 18:31:38 -04:00
|
|
|
int thr;
|
2018-11-26 11:09:46 -05:00
|
|
|
|
|
|
|
|
for (thr = 0; thr < MAX_THREADS; thr++) {
|
2021-09-30 13:02:18 -04:00
|
|
|
LIST_INIT(&ha_thread_ctx[thr].pool_lru_head);
|
2018-11-26 11:09:46 -05:00
|
|
|
}
|
2022-02-22 10:23:09 -05:00
|
|
|
|
2021-09-15 04:05:48 -04:00
|
|
|
detect_allocator();
|
2018-11-26 11:09:46 -05:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
INITCALL0(STG_PREPARE, init_pools);
|
2018-11-26 05:44:35 -05:00
|
|
|
|
2021-09-15 04:41:24 -04:00
|
|
|
/* Report in build options if trim is supported */
|
|
|
|
|
static void pools_register_build_options(void)
|
|
|
|
|
{
|
|
|
|
|
if (is_trim_enabled()) {
|
|
|
|
|
char *ptr = NULL;
|
|
|
|
|
memprintf(&ptr, "Support for malloc_trim() is enabled.");
|
|
|
|
|
hap_register_build_opts(ptr, 1);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
INITCALL0(STG_REGISTER, pools_register_build_options);
|
|
|
|
|
|
2016-11-18 20:25:36 -05:00
|
|
|
/* register cli keywords */
|
|
|
|
|
static struct cli_kw_list cli_kws = {{ },{
|
2021-05-07 05:38:37 -04:00
|
|
|
{ { "show", "pools", NULL }, "show pools : report information about the memory pools usage", NULL, cli_io_handler_dump_pools },
|
2016-11-18 20:25:36 -05:00
|
|
|
{{},}
|
|
|
|
|
}};
|
|
|
|
|
|
2018-11-25 13:14:37 -05:00
|
|
|
INITCALL1(STG_REGISTER, cli_register_kw, &cli_kws);
|
2016-11-18 20:25:36 -05:00
|
|
|
|
2019-01-29 09:20:16 -05:00
|
|
|
|
|
|
|
|
/* config parser for global "tune.fail-alloc" */
|
|
|
|
|
static int mem_parse_global_fail_alloc(char **args, int section_type, struct proxy *curpx,
|
2021-03-22 06:21:36 -04:00
|
|
|
const struct proxy *defpx, const char *file, int line,
|
|
|
|
|
char **err)
|
2019-01-29 09:20:16 -05:00
|
|
|
{
|
|
|
|
|
if (too_many_args(1, args, err, NULL))
|
|
|
|
|
return -1;
|
|
|
|
|
mem_fail_rate = atoi(args[1]);
|
|
|
|
|
if (mem_fail_rate < 0 || mem_fail_rate > 100) {
|
|
|
|
|
memprintf(err, "'%s' expects a numeric value between 0 and 100.", args[0]);
|
|
|
|
|
return -1;
|
|
|
|
|
}
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
2022-03-08 04:41:40 -05:00
|
|
|
/* config parser for global "no-memory-trimming" */
|
|
|
|
|
static int mem_parse_global_no_mem_trim(char **args, int section_type, struct proxy *curpx,
|
|
|
|
|
const struct proxy *defpx, const char *file, int line,
|
|
|
|
|
char **err)
|
|
|
|
|
{
|
|
|
|
|
if (too_many_args(0, args, err, NULL))
|
|
|
|
|
return -1;
|
|
|
|
|
disable_trim = 1;
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
2019-01-29 09:20:16 -05:00
|
|
|
/* register global config keywords */
|
|
|
|
|
static struct cfg_kw_list mem_cfg_kws = {ILH, {
|
|
|
|
|
{ CFG_GLOBAL, "tune.fail-alloc", mem_parse_global_fail_alloc },
|
2022-03-08 04:41:40 -05:00
|
|
|
{ CFG_GLOBAL, "no-memory-trimming", mem_parse_global_no_mem_trim },
|
2019-01-29 09:20:16 -05:00
|
|
|
{ 0, NULL, NULL }
|
|
|
|
|
}};
|
|
|
|
|
|
|
|
|
|
INITCALL1(STG_REGISTER, cfg_register_keywords, &mem_cfg_kws);
|
|
|
|
|
|
2007-05-13 12:26:08 -04:00
|
|
|
/*
|
|
|
|
|
* Local variables:
|
|
|
|
|
* c-indent-level: 8
|
|
|
|
|
* c-basic-offset: 8
|
|
|
|
|
* End:
|
|
|
|
|
*/
|