grafana/pkg/tsdb/elasticsearch/metrics_response_processor.go
Andreas Christou c1a46fdcb5
Elasticsearch: Decoupling from core (#115900)
* Complete decoupling of backend

- Replace usage of featuremgmt
- Copy simplejson
- Add standalone logic

* Complete frontend decoupling

- Fix imports
- Copy store and reducer logic

* Add required files for full decoupling

* Regen cue

* Prettier

* Remove unneeded script

* Jest fix

* Add jest config

* Lint

* Lit

* Prune suppresions
2026-01-14 12:54:21 +00:00

725 lines
20 KiB
Go

package elasticsearch
import (
"fmt"
"sort"
"strconv"
"time"
"github.com/grafana/grafana-plugin-sdk-go/backend"
"github.com/grafana/grafana-plugin-sdk-go/data"
"github.com/grafana/grafana/pkg/tsdb/elasticsearch/simplejson"
)
// metricsResponseProcessor handles processing of metrics query responses
type metricsResponseProcessor struct{}
// newMetricsResponseProcessor creates a new metrics response processor
func newMetricsResponseProcessor() *metricsResponseProcessor {
return &metricsResponseProcessor{}
}
// processBuckets processes aggregation buckets recursively
func (p *metricsResponseProcessor) processBuckets(aggs map[string]interface{}, target *Query,
queryResult *backend.DataResponse, props map[string]string, depth int) error {
var err error
maxDepth := len(target.BucketAggs) - 1
aggIDs := make([]string, 0)
for k := range aggs {
aggIDs = append(aggIDs, k)
}
sort.Strings(aggIDs)
for _, aggID := range aggIDs {
v := aggs[aggID]
aggDef, _ := findAgg(target, aggID)
esAgg := simplejson.NewFromAny(v)
if aggDef == nil {
continue
}
if aggDef.Type == nestedType {
err = p.processBuckets(esAgg.MustMap(), target, queryResult, props, depth+1)
if err != nil {
return err
}
continue
}
if depth == maxDepth {
if aggDef.Type == dateHistType {
err = p.processMetrics(esAgg, target, queryResult, props)
} else {
err = p.processAggregationDocs(esAgg, aggDef, target, queryResult, props)
}
if err != nil {
return err
}
} else {
for _, b := range esAgg.Get("buckets").MustArray() {
bucket := simplejson.NewFromAny(b)
newProps := make(map[string]string)
for k, v := range props {
newProps[k] = v
}
if key, err := bucket.Get("key").String(); err == nil {
newProps[aggDef.Field] = key
} else if key, err := bucket.Get("key").Int64(); err == nil {
newProps[aggDef.Field] = strconv.FormatInt(key, 10)
}
if key, err := bucket.Get("key_as_string").String(); err == nil {
newProps[aggDef.Field] = key
}
err = p.processBuckets(bucket.MustMap(), target, queryResult, newProps, depth+1)
if err != nil {
return err
}
}
buckets := esAgg.Get("buckets").MustMap()
bucketKeys := make([]string, 0)
for k := range buckets {
bucketKeys = append(bucketKeys, k)
}
sort.Strings(bucketKeys)
for _, bucketKey := range bucketKeys {
bucket := simplejson.NewFromAny(buckets[bucketKey])
newProps := make(map[string]string)
for k, v := range props {
newProps[k] = v
}
newProps["filter"] = bucketKey
err = p.processBuckets(bucket.MustMap(), target, queryResult, newProps, depth+1)
if err != nil {
return err
}
}
}
}
return nil
}
// processMetrics processes metric aggregations from date histogram buckets
func (p *metricsResponseProcessor) processMetrics(esAgg *simplejson.Json, target *Query, query *backend.DataResponse,
props map[string]string) error {
frames := data.Frames{}
esAggBuckets := esAgg.Get("buckets").MustArray()
jsonBuckets := make([]*simplejson.Json, len(esAggBuckets))
for i, v := range esAggBuckets {
jsonBuckets[i] = simplejson.NewFromAny(v)
}
for _, metric := range target.Metrics {
if metric.Hide {
continue
}
switch metric.Type {
case countType:
countFrames, err := p.processCountMetric(jsonBuckets, props)
if err != nil {
return fmt.Errorf("error processing count metric: %w", err)
}
frames = append(frames, countFrames...)
case percentilesType:
percentileFrames, err := p.processPercentilesMetric(metric, jsonBuckets, props)
if err != nil {
return fmt.Errorf("error processing percentiles metric: %w", err)
}
frames = append(frames, percentileFrames...)
case topMetricsType:
topMetricsFrames, err := p.processTopMetricsMetric(metric, jsonBuckets, props)
if err != nil {
return fmt.Errorf("error processing top metrics metric: %w", err)
}
frames = append(frames, topMetricsFrames...)
case extendedStatsType:
extendedStatsFrames, err := p.processExtendedStatsMetric(metric, jsonBuckets, props)
if err != nil {
return fmt.Errorf("error processing extended stats metric: %w", err)
}
frames = append(frames, extendedStatsFrames...)
default:
defaultFrames, err := p.processDefaultMetric(metric, jsonBuckets, props)
if err != nil {
return fmt.Errorf("error processing default metric: %w", err)
}
frames = append(frames, defaultFrames...)
}
}
if query.Frames != nil {
oldFrames := query.Frames
frames = append(oldFrames, frames...)
}
query.Frames = frames
return nil
}
// processCountMetric processes count metric aggregations
func (p *metricsResponseProcessor) processCountMetric(buckets []*simplejson.Json, props map[string]string) (data.Frames, error) {
tags := make(map[string]string, len(props))
timeVector := make([]time.Time, 0, len(buckets))
values := make([]*float64, 0, len(buckets))
for _, bucket := range buckets {
value := castToFloat(bucket.Get("doc_count"))
timeValue, err := getAsTime(bucket.Get("key"))
if err != nil {
return nil, err
}
timeVector = append(timeVector, timeValue)
values = append(values, value)
}
for k, v := range props {
tags[k] = v
}
tags["metric"] = countType
return data.Frames{newTimeSeriesFrame(timeVector, tags, values)}, nil
}
// processPercentilesMetric processes percentiles metric aggregations
func (p *metricsResponseProcessor) processPercentilesMetric(metric *MetricAgg, buckets []*simplejson.Json, props map[string]string) (data.Frames, error) {
if len(buckets) == 0 {
return data.Frames{}, nil
}
firstBucket := buckets[0]
percentiles := firstBucket.GetPath(metric.ID, "values").MustMap()
percentileKeys := make([]string, 0)
for k := range percentiles {
percentileKeys = append(percentileKeys, k)
}
sort.Strings(percentileKeys)
frames := data.Frames{}
for _, percentileName := range percentileKeys {
tags := make(map[string]string, len(props))
timeVector := make([]time.Time, 0, len(buckets))
values := make([]*float64, 0, len(buckets))
for k, v := range props {
tags[k] = v
}
tags["metric"] = "p" + percentileName
tags["field"] = metric.Field
for _, bucket := range buckets {
value := castToFloat(bucket.GetPath(metric.ID, "values", percentileName))
key := bucket.Get("key")
timeValue, err := getAsTime(key)
if err != nil {
return nil, err
}
timeVector = append(timeVector, timeValue)
values = append(values, value)
}
frames = append(frames, newTimeSeriesFrame(timeVector, tags, values))
}
return frames, nil
}
// processTopMetricsMetric processes top_metrics metric aggregations
func (p *metricsResponseProcessor) processTopMetricsMetric(metric *MetricAgg, buckets []*simplejson.Json, props map[string]string) (data.Frames, error) {
metrics := metric.Settings.Get("metrics").MustArray()
frames := data.Frames{}
for _, metricField := range metrics {
tags := make(map[string]string, len(props))
timeVector := make([]time.Time, 0, len(buckets))
values := make([]*float64, 0, len(buckets))
for k, v := range props {
tags[k] = v
}
tags["field"] = metricField.(string)
tags["metric"] = "top_metrics"
for _, bucket := range buckets {
stats := bucket.GetPath(metric.ID, "top")
timeValue, err := getAsTime(bucket.Get("key"))
if err != nil {
return nil, err
}
timeVector = append(timeVector, timeValue)
for _, stat := range stats.MustArray() {
stat := stat.(map[string]interface{})
metrics, hasMetrics := stat["metrics"]
if hasMetrics {
metrics := metrics.(map[string]interface{})
metricValue, hasMetricValue := metrics[metricField.(string)]
if hasMetricValue && metricValue != nil {
v := metricValue.(float64)
values = append(values, &v)
}
}
}
}
frames = append(frames, newTimeSeriesFrame(timeVector, tags, values))
}
return frames, nil
}
// processExtendedStatsMetric processes extended_stats metric aggregations
func (p *metricsResponseProcessor) processExtendedStatsMetric(metric *MetricAgg, buckets []*simplejson.Json, props map[string]string) (data.Frames, error) {
metaKeys := make([]string, 0)
meta := metric.Meta.MustMap()
for k := range meta {
metaKeys = append(metaKeys, k)
}
sort.Strings(metaKeys)
frames := data.Frames{}
for _, statName := range metaKeys {
v := meta[statName]
if enabled, ok := v.(bool); !ok || !enabled {
continue
}
tags := make(map[string]string, len(props))
timeVector := make([]time.Time, 0, len(buckets))
values := make([]*float64, 0, len(buckets))
for k, v := range props {
tags[k] = v
}
tags["metric"] = statName
tags["field"] = metric.Field
for _, bucket := range buckets {
timeValue, err := getAsTime(bucket.Get("key"))
if err != nil {
return nil, err
}
var value *float64
switch statName {
case "std_deviation_bounds_upper":
value = castToFloat(bucket.GetPath(metric.ID, "std_deviation_bounds", "upper"))
case "std_deviation_bounds_lower":
value = castToFloat(bucket.GetPath(metric.ID, "std_deviation_bounds", "lower"))
default:
value = castToFloat(bucket.GetPath(metric.ID, statName))
}
timeVector = append(timeVector, timeValue)
values = append(values, value)
}
labels := tags
frames = append(frames, newTimeSeriesFrame(timeVector, labels, values))
}
return frames, nil
}
// processDefaultMetric processes default metric aggregations
func (p *metricsResponseProcessor) processDefaultMetric(metric *MetricAgg, buckets []*simplejson.Json, props map[string]string) (data.Frames, error) {
tags := make(map[string]string, len(props))
timeVector := make([]time.Time, 0, len(buckets))
values := make([]*float64, 0, len(buckets))
for k, v := range props {
tags[k] = v
}
tags["metric"] = metric.Type
tags["field"] = metric.Field
tags["metricId"] = metric.ID
for _, bucket := range buckets {
timeValue, err := getAsTime(bucket.Get("key"))
if err != nil {
return nil, err
}
valueObj, err := bucket.Get(metric.ID).Map()
if err != nil {
continue
}
var value *float64
if _, ok := valueObj["normalized_value"]; ok {
value = castToFloat(bucket.GetPath(metric.ID, "normalized_value"))
} else {
value = castToFloat(bucket.GetPath(metric.ID, "value"))
}
timeVector = append(timeVector, timeValue)
values = append(values, value)
}
return data.Frames{newTimeSeriesFrame(timeVector, tags, values)}, nil
}
// ensurePropFields guarantees all property columns exist even if prior frames lacked them
func ensurePropFields(fields *[]*data.Field, keys []string) {
have := map[string]bool{}
for _, f := range *fields {
have[f.Name] = true
}
for _, k := range keys {
if !have[k] {
d := ""
f := extractDataField(k, &d)
*fields = append(*fields, f)
}
}
}
// appendPropsRow appends one row of property values; skipKey avoids double-append
func appendPropsRow(fields *[]*data.Field, props map[string]string, propKeys []string, skipKey string) {
for _, f := range *fields {
for _, pk := range propKeys {
if pk == skipKey {
continue
}
if f.Name == pk {
val := props[pk]
f.Append(&val)
}
}
}
}
// appendMetrics appends all metric values for a single bucket/row
func appendMetrics(fields *[]*data.Field, bucket *simplejson.Json, target *Query) {
var values []interface{}
for _, metric := range target.Metrics {
switch metric.Type {
case countType:
addMetricValueToFields(fields, values, getMetricName(metric.Type), castToFloat(bucket.Get("doc_count")))
case extendedStatsType:
addExtendedStatsToFields(fields, bucket, metric, values)
case percentilesType:
addPercentilesToFields(fields, bucket, metric, values)
case topMetricsType:
addTopMetricsToFields(fields, bucket, metric, values)
default:
addOtherMetricsToFields(fields, bucket, metric, values, target)
}
}
}
// appendKeyColumnString appends a string key to an existing field or creates it
func appendKeyColumnString(fields *[]*data.Field, fieldName, key string) {
for _, f := range *fields {
if f.Name == fieldName {
k := key
f.Append(&k)
return
}
}
k := key
f := extractDataField(fieldName, &k)
f.Append(&k)
*fields = append(*fields, f)
}
// appendBucketKeyValue appends the bucket's "key" (string or number) to fieldName
func appendBucketKeyValue(fields *[]*data.Field, fieldName string, bucket *simplejson.Json) error {
for _, f := range *fields {
if f.Name == fieldName {
if s, err := bucket.Get("key").String(); err == nil {
f.Append(&s)
return nil
}
num, err := bucket.Get("key").Float64()
if err != nil {
return fmt.Errorf("error appending bucket key to existing field %q: %w", fieldName, err)
}
f.Append(&num)
return nil
}
}
// field not present yet
if s, err := bucket.Get("key").String(); err == nil {
f := extractDataField(fieldName, &s)
f.Append(&s)
*fields = append(*fields, f)
return nil
}
num, err := bucket.Get("key").Float64()
if err != nil {
return fmt.Errorf("error appending bucket key to new field %q: %w", fieldName, err)
}
f := extractDataField(fieldName, &num)
f.Append(&num)
*fields = append(*fields, f)
return nil
}
func (p *metricsResponseProcessor) processAggregationDocs(
esAgg *simplejson.Json,
aggDef *BucketAgg,
target *Query,
queryResult *backend.DataResponse,
props map[string]string,
) error {
propKeys := createPropKeys(props)
buckets := esAgg.Get("buckets")
if arr := buckets.MustArray(); len(arr) > 0 {
fields := createFields(queryResult.Frames, propKeys)
ensurePropFields(&fields, propKeys)
for _, v := range arr {
bucket := simplejson.NewFromAny(v)
appendPropsRow(&fields, props, propKeys, "")
if aggDef.Field != "" {
if err := appendBucketKeyValue(&fields, aggDef.Field, bucket); err != nil {
return err
}
}
appendMetrics(&fields, bucket, target)
}
queryResult.Frames = data.Frames{&data.Frame{Fields: fields}}
return nil
}
if m := buckets.MustMap(); len(m) > 0 {
// default key column to "filter" for leaf filters
keyFieldName := aggDef.Field
if keyFieldName == "" {
keyFieldName = "filter"
}
// ensure "filter" exists among props
hasFilter := false
for _, pk := range propKeys {
if pk == "filter" {
hasFilter = true
break
}
}
if !hasFilter {
propKeys = append(propKeys, "filter")
}
fields := createFields(queryResult.Frames, propKeys)
ensurePropFields(&fields, propKeys)
keys := make([]string, 0, len(m))
for k := range m {
keys = append(keys, k)
}
sort.Strings(keys)
for _, k := range keys {
bucket := simplejson.NewFromAny(m[k])
locProps := make(map[string]string, len(props)+1)
for kk, vv := range props {
locProps[kk] = vv
}
locProps["filter"] = k
// avoid double-append when the key column is "filter"
skip := ""
if keyFieldName == "filter" {
skip = "filter"
}
appendPropsRow(&fields, locProps, propKeys, skip)
appendKeyColumnString(&fields, keyFieldName, k)
appendMetrics(&fields, bucket, target)
}
queryResult.Frames = data.Frames{&data.Frame{Fields: fields}}
return nil
}
// no buckets present
queryResult.Frames = data.Frames{}
return nil
}
// newTimeSeriesFrame creates a new time series frame
func newTimeSeriesFrame(timeData []time.Time, tags map[string]string, values []*float64) *data.Frame {
frame := data.NewFrame("",
data.NewField(data.TimeSeriesTimeFieldName, nil, timeData),
data.NewField(data.TimeSeriesValueFieldName, tags, values))
frame.Meta = &data.FrameMeta{
Type: data.FrameTypeTimeSeriesMulti,
}
return frame
}
// trimDatapoints trims datapoints from the beginning and end of the results
func trimDatapoints(queryResult backend.DataResponse, target *Query) {
var histogram *BucketAgg
for _, bucketAgg := range target.BucketAggs {
if bucketAgg.Type == dateHistType {
histogram = bucketAgg
break
}
}
if histogram == nil {
return
}
trimEdges, err := castToInt(histogram.Settings.Get("trimEdges"))
if err != nil {
return
}
frames := queryResult.Frames
for _, frame := range frames {
for _, field := range frame.Fields {
if field.Len() > trimEdges*2 {
// first we delete the first "trim" items
for i := 0; i < trimEdges; i++ {
field.Delete(0)
}
// then we delete the last "trim" items
for i := 0; i < trimEdges; i++ {
field.Delete(field.Len() - 1)
}
}
}
}
}
// Helper functions for adding metrics to fields
func addMetricValueToFields(fields *[]*data.Field, values []interface{}, metricName string, value *float64) {
index := -1
for i, f := range *fields {
if f.Name == metricName {
index = i
break
}
}
var field data.Field
if index == -1 {
field = *data.NewField(metricName, nil, []*float64{})
*fields = append(*fields, &field)
} else {
field = *(*fields)[index]
}
field.Append(value)
}
func addPercentilesToFields(fields *[]*data.Field, bucket *simplejson.Json, metric *MetricAgg, values []interface{}) {
percentiles := bucket.GetPath(metric.ID, "values")
for _, percentileName := range getSortedKeys(percentiles.MustMap()) {
percentileValue := percentiles.Get(percentileName).MustFloat64()
addMetricValueToFields(fields, values, fmt.Sprintf("p%v %v", percentileName, metric.Field), &percentileValue)
}
}
func addExtendedStatsToFields(fields *[]*data.Field, bucket *simplejson.Json, metric *MetricAgg, values []interface{}) {
metaKeys := make([]string, 0)
meta := metric.Meta.MustMap()
for k := range meta {
metaKeys = append(metaKeys, k)
}
sort.Strings(metaKeys)
for _, statName := range metaKeys {
v := meta[statName]
if enabled, ok := v.(bool); !ok || !enabled {
continue
}
var value *float64
switch statName {
case "std_deviation_bounds_upper":
value = castToFloat(bucket.GetPath(metric.ID, "std_deviation_bounds", "upper"))
case "std_deviation_bounds_lower":
value = castToFloat(bucket.GetPath(metric.ID, "std_deviation_bounds", "lower"))
default:
value = castToFloat(bucket.GetPath(metric.ID, statName))
}
addMetricValueToFields(fields, values, getMetricName(metric.Type), value)
break
}
}
func addTopMetricsToFields(fields *[]*data.Field, bucket *simplejson.Json, metric *MetricAgg, values []interface{}) {
baseName := getMetricName(metric.Type)
metrics := metric.Settings.Get("metrics").MustStringArray()
for _, metricField := range metrics {
// If we selected more than one metric we also add each metric name
metricName := baseName
if len(metrics) > 1 {
metricName += " " + metricField
}
top := bucket.GetPath(metric.ID, "top").MustArray()
metrics, hasMetrics := top[0].(map[string]interface{})["metrics"]
if hasMetrics {
metrics := metrics.(map[string]interface{})
metricValue, hasMetricValue := metrics[metricField]
if hasMetricValue && metricValue != nil {
v := metricValue.(float64)
addMetricValueToFields(fields, values, metricName, &v)
}
}
}
}
func addOtherMetricsToFields(fields *[]*data.Field, bucket *simplejson.Json, metric *MetricAgg, values []interface{}, target *Query) {
metricName := getMetricName(metric.Type)
otherMetrics := make([]*MetricAgg, 0)
for _, m := range target.Metrics {
// To other metrics we add metric of the same type that are not the current metric
if m.ID != metric.ID && m.Type == metric.Type {
otherMetrics = append(otherMetrics, m)
}
}
if len(otherMetrics) > 0 {
metricName += " " + metric.Field
// We check if we have metric with the same type and same field name
// If so, append metric.ID to the metric name
for _, m := range otherMetrics {
if m.Field == metric.Field {
metricName += " " + metric.ID
break
}
}
if metric.Type == "bucket_script" {
// Use the formula in the column name
metricName = metric.Settings.Get("script").MustString("")
}
}
addMetricValueToFields(fields, values, metricName, castToFloat(bucket.GetPath(metric.ID, "value")))
}
func extractDataField(name string, v interface{}) *data.Field {
var field *data.Field
switch v.(type) {
case *string:
field = data.NewField(name, nil, []*string{})
case *float64:
field = data.NewField(name, nil, []*float64{})
default:
field = &data.Field{}
}
isFilterable := true
field.Config = &data.FieldConfig{Filterable: &isFilterable}
return field
}